Controlled radiation-chemical synthesis of metal polymer nanocomposites in the films of interpolyelectrolyte complexes: Principles, prospects and implications

Radiation Physics and Chemistry - Tập 169 - Trang 108076 - 2020
Alexey A. Zezin1, Dmitry I. Klimov1, Elena A. Zezina2, Kristina V. Mkrtchyan1, Vladimir I. Feldman2
1Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya ul. 70, Moscow 117393, Russia
2Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia

Tài liệu tham khảo

Anbar, M., Farhataziz, Ross, A.B., 1975. Selected Specific Rates of Reactionsof Transients from Water in Aqueous Solution. II. Hydrogen Atom, NSRDS—NBS 51, Washington DC. Azaroff, 1958 Bakar, 2012, Spatial organization of a metal polymer nanocomposite obtained by the radiation-induced reduction of copper ions in the poly(allylamine)-poly(acrylic acid)-Cu2+ system, Mendeleev Commun., 22, 211, 10.1016/j.mencom.2012.06.014 Bakar, 2014, Controlling the size and distribution of copper nanoparticles in double and triple polymer metal complexes by X-ray irradiation, Rad. Phys. Chem., 94, 62, 10.1016/j.radphyschem.2013.07.006 Belloni, 2006, Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis, Catal. Today, 113, 141, 10.1016/j.cattod.2005.11.082 Bronstein, 2004, Nanostructured polymeric systems as nanoreactors for nanoparticle formation, Russ. Chem. Rev., 73, 501, 10.1070/RC2004v073n05ABEH000782 Bruening, 2008, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes, Langmuir, 24, 7663, 10.1021/la800179z Carter, 2007, Nanoscale energy deposition by X-ray absorbing nanostructures, J. Phys. Chem., 111, 11622, 10.1021/jp075253u Chen, 2010, A three-dimensional gold-decorated nanoporous copper core-shell composite for electrocatalysis and nonenzymatic biosensing, Adv. Funct. Mater., 20, 2279, 10.1002/adfm.201000326 Chmielewski, 2007, Prospects and challenges in application of gamma, electron and ion beams in. processing of nanomaterials, Nucl. Instrum. Methods Phys. Res. B, 265, 339, 10.1016/j.nimb.2007.08.069 Clifford, 2018, Highly magnetic Co nanoparticles fabricated by X-ray radiolysis, Rad. Phys. Chem., 144, 111, 10.1016/j.radphyschem.2017.11.023 Dai, 2002, Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films, Nano Lett., 2, 497, 10.1021/nl025547l Demchenko, 2017, X-ray study of structural formation, thermomechanical and antimicrobial properties of copper-containing polymer nanocomposites obtained by the thermal reduction method, Eur. Polym. J., 96, 326, 10.1016/j.eurpolymj.2017.08.057 Demchenko, 2017, X-ray study of structural formation and thermomechanical properties of silver-containing polymer nanocomposites, Nanoscale Res. Lett., 12, 235, 10.1186/s11671-017-1967-2 Demchenko, 2014, Structuring, morphology, and thermomechanical properties of nanocomposites formed from ternary polyelectrolyte-metal complexes based on pectin, polyethyleneimine, and CuSO4, Polym. Sci. B, 56, 927 Dotzauer, 2009, Wet air oxidation with tubular ceramic membranes modified with polyelectrolyte/Pt nanoparticle films, Appl. Catal. B, 91, 180, 10.1016/j.apcatb.2009.05.022 Duan, 2015, Anodic behavior of carbon supported Cu@Ag core–shell nanocatalysts in direct borohydride fuel cells, J. Power Sour., 293, 292, 10.1016/j.jpowsour.2015.05.086 Elahi, 2018, Recent biomedical applications of gold nanoparticles: a review, Talanta, 184, 537, 10.1016/j.talanta.2018.02.088 Ershov, 1994, Colloidal copper in aqueous solutions: radiation-chemical reduction, mechanism of formation, and properties, Russ. Chem. Bull., 43, 16, 10.1007/BF00699128 Ershov, 1997, Metal ions in unusual and unstable oxidation states in aqueous solutions: preparation and properties, Russ. Chem. Rev., 66, 93, 10.1070/RC1997v066n02ABEH000264 Ershov, 1999, Short-lived metal clusters in aqueous solutions: formation, identification, and properties, Russ. Chem. Bull., 48, 1, 10.1007/BF02494392 Ershov, 1993, Growth of silver particles in aqueous solution: long-lived "magic" clusters and ionic strength effects, J. Phys. Chem., 97, 339, 10.1021/j100104a013 Ershov, 2006, Mechanism of silver nucleation upon the radiation-induced reduction of its ions in polyphosphate-containing aqueous solutions, Colloid J., 68, 417, 10.1134/S1061933X06040041 Farhataziz, Ross, A.B., 1977. Selected Specific Rates of Reactionsof Transients from Water in Aqueous Solution. III. Hydroxyl Radical and Perhydroxyl Radical and Their radical Ions, NSRDS—NBS 59, Washington. Feldman, 2013, X ray induced formation of metal nanoparticles from interpolyelectrolyte complexes with copper and silver ions: the radiation-chemical contrast, J. Phys. Chem., 117, 7286 Flores, 2018, Radiation-induced preparation of core/shell gold/albumin nanoparticles, Radiat. Phys. Chem., 142, 60, 10.1016/j.radphyschem.2017.02.030 Gachard, 1998, Radiation-induced and chemical formation of gold clusters, New J. Chem., 22, 1257, 10.1039/a804445g Gubin, 2009 Hart, 1969 Hema, 2018, Nanoformulations for targeted drug delivery to prostate cancer: an overview, J. Nanosci. Nanotechnol., 18, 5171, 10.1166/jnn.2018.15420 Hanawalt, 1938, Chemical Analysis by X-Ray Diffraction Classification and Use of X-Ray Diffraction Patterns, Industrial and Engineering Chemistry, Anal. Ed., 10, 467, 10.1021/ac50125a001 Henglein, 1977, The reactivity of silver atoms in aqueous solutions (a γ-radiolysis study), Ber. Bunsenges. Phys. Chem., 81, 556, 10.1002/bbpc.19770810604 Henly, 1969 Huang, 2004, Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method, Carbohydr. Res., 339, 2627, 10.1016/j.carres.2004.08.005 Hubbel, 1996 Joshi, 1998, Radiation induced synthesis and characterization of copper nanoparticles, Nanostruct. Mater., 10, 1135, 10.1016/S0965-9773(98)00153-6 Kabanov, 1979, Study of the structure of the triple polymer-metalline complex – polyacrylic acid polyethyleneimine – copper (II). Vysokomol, Soedin. Ser. A, 21, 209 Kapoor, 2002, Preparation, characterization and surface modification of Cu metal nanoparticles, Chem. Phys. Lett., 355, 383, 10.1016/S0009-2614(02)00293-2 Katti, 2016, Renaissance of nuclear medicine through green nanotechnology, J. Radioanal. Nucl. Chem., 309, 5, 10.1007/s10967-016-4888-0 Khatouri, 1992, Radiation-induced copper aggregates and oligomers, Chem. Phys. Lett., 191, 351, 10.1016/0009-2614(92)85313-Y Kim, 2012, Combinatorial polymer library approach for the synthesis of silver nanoplates, Chem. Mater., 24, 4424, 10.1021/cm3028115 Klimov, 2018, Radiation-induced preparation of bimetallic nanoparticles in the films of interpolyelectrolyte complexes, Rad. Phys. Chem., 142, 65, 10.1016/j.radphyschem.2017.02.034 Koetz, 2007 Lampre, 2000, Spectral properties and redox potentials of silver atoms complexed by chloride ions in aqueous solution, J. Phys. Chem. B, 104, 6233, 10.1021/jp000544n Lei, 2008, Amphiphilic core–shell particles as carrier systems for metallic nanoparticles, Colloid Surf. A, 317, 705, 10.1016/j.colsurfa.2007.12.006 Long, 2007, Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation, Rad. Phys. Chem., 76, 1126, 10.1016/j.radphyschem.2006.11.001 Macanás, 2006, Preparation and characterization of polymer stabilized metal nanoparticles for sensor applications, Phys. Status Solidi A, 203, 1194, 10.1002/pssa.200566167 Marignier, 1985, Microaggregates of nonnoble metals and bimetallic alloys prepared by radiation-induced reduction, Lett.Nat., 313, 47 Menezes, 2012, Synthesis of stable AuAg bimetallic nanoparticles encapsulated by diblock copolymer micelles, Nanoscale, 4, 1658, 10.1039/c2nr11082b Mostafavi, 1990, Ultra slow aggregation process for silver cluster of a few atoms in solution, Chem. Phys. Lett., 167, 193, 10.1016/0009-2614(90)85004-V Muller, 2004, Synthesis of nanostructured metal-organic films: surface x-ray radiolysis of silver ions using a langmuir monolayer as a template, Langmuir, 20, 4791, 10.1021/la049534u Muraviev, 2006, Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices, Sens. Actuators B Chem., 118, 408, 10.1016/j.snb.2006.04.047 Mulvaney, 1993, Electrochemistry of Multilayer Colloids: preparation and Absorption Spectrum of Gold-Coated Silver Particles, J. Phys.Chem., 97, 7061, 10.1021/j100129a022 Murray, 2008, Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores, Chem. Rev., 108, 2688, 10.1021/cr068077e Oliani, 2017, Fabrication of polypropylene/silver nanocomposites for biocidal applications, Mater. Sci. Eng. C, 75, 845, 10.1016/j.msec.2017.02.109 Ozkaraoglu, 2009, Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation, Polymer, 50, 462, 10.1016/j.polymer.2008.12.008 Pergushov, 2014, Advanced functional structures based on interpolyelectrolyte complexes, Adv. Polym. Sci., 255, 173, 10.1007/12_2012_182 Pomogailo, 2005 Pozdnyakov, 2017, Nanocomposites with silver nanoparticles based on сopolymer of 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone, Russ. Chem. Bull., 66, 1099, 10.1007/s11172-017-1860-2 Prozorova, 2014, Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles, Int. J. Nanomed., 9, 1883, 10.2147/IJN.S57865 Rai, 2009, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27, 76, 10.1016/j.biotechadv.2008.09.002 Remita, 2007, X-ray radiolysis induced formation of silver nano-particles: a SAXS and UV–visible absorption spectroscopy study, Nucl. Instrum. Methods Phys. Res. B, 263, 436, 10.1016/j.nimb.2007.06.032 Remita, 2003, Dose rate effect on bimetallic goldpalladium cluster structure, J. Phys. Chem. B, 107, 31, 10.1021/jp021277j Remita, 1994, STM identification of silver oligomer clusters prepared by radiolysis in aqueous solution, Chem. Phys. Lett., 218, 115, 10.1016/0009-2614(93)E1451-L Remita, 1999, Radiolytic formation of bilayered Ptcore/Aushell and Aucore/Ptshell clusters in aqueous solution, Radiat. Phys. Chem., 54, 463, 10.1016/S0969-806X(98)00283-7 Remita, 2010, Metal clusters and nanomaterials: contribution of radiation chemistry, Recent Trends Radiat. Chem., 347, 10.1142/9789814282093_0013 Remita, 1996, EDTA and CN- complexing effect on the kinetics, spectral properties, and redox properties of Ag1° and Ag2+ in aqueous solution, ACS J. Phys. Chem., 100, 10187, 10.1021/jp960176g Remita, 1995, Evaluation of the redox potential of Ag1I (CN)2-/Agl°(CN)22- in aqueous solution, ACS J. Phys. Chem., 99, 13198, 10.1021/j100035a025 Rosi, 2005, Nanostructures in biodiagnostics, Chem. Rev., 105, 1547, 10.1021/cr030067f Ruiz, 2011, Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure, Nanoscale Res. Lett., 6, 343, 10.1186/1556-276X-6-343 Ruiz, 2010, Intermatrix synthesis of polymer stabilized inorganic nanocatalyst with maximum accessibility for reactants, , Dalton Trans., 39, 1751, 10.1039/B917929A Saha, 2012, Gold nanoparticles in chemical and biological sensing, Chem. Rev., 112, 2739, 10.1021/cr2001178 Schacher, 2009, Interpolyelectrolyte complexes of dynamic multicompartment micelles, ACS Nano, 3, 2095, 10.1021/nn900110s Schacher, 2011, Core-crosslinked compartmentalized cylinders, Nanoscale, 3, 288, 10.1039/C0NR00649A Shi, 2004, Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials, Prog. Polym. Sci., 29, 987, 10.1016/j.progpolymsci.2004.07.001 Singh, 2012, Polymer-assisted synthesis of metallopolymer nanocomposites and their applications in liquefied petroleum gas sensing at room temperature, Sens. Actuators B, 166–167, 281, 10.1016/j.snb.2012.02.063 Solodovnikov, 2013, Ferromagnetic resonance spectra of nanosized metal particles in polymer matrices, Polym. Sci. Ser. A, 55, 749, 10.1134/S0965545X13120043 Texier, 1996, Reduction of AgI1(NH3)2+ to Ag°1(NH3)2 in solution. Redox potential and spectral study, ACS J. Phys. Chem., 100, 12472, 10.1021/jp9535654 Treguer, 1998, Dose rate effects on radiolytic synthesis of gold−silver bimetallic clusters in solution, J. Phys. Chem. B, 102, 4310, 10.1021/jp981467n Twu, 2008, Preparation of silver nanoparticles using chitosan suspensions, Powder Technol., 185, 251, 10.1016/j.powtec.2007.10.025 Vo, 2014, Influence of Au(III) interactions with chitosan on gold nanoparticle formation, J. Phys. Chem. C, 118, 4465, 10.1021/jp4112316 Voets, 2009, Complex coacervate core micelles, Adv. Colloid Interface Sci., 147, 300, 10.1016/j.cis.2008.09.012 Wang, 2002, Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size, Langmuir, 18, 3370, 10.1021/la015725a Wang, 2003, Manipulating nanoparticle size within polyelectrolyte multilayers via electroless nickel deposition, Chem. Matter, 15, 299, 10.1021/cm020934h Wardman, 1989, Reduction potentials of one-electron couples involving free radicals in aqueous solution, J. Phys. Chem. Ref. Data, 18, 1637, 10.1063/1.555843 Wohrle, 2003 Xia, 2009, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angew. Chem. Int. Ed., 48, 60, 10.1002/anie.200802248 Yan, 2010, Hierarchical assemblies of coordination supramolecules, Coord. Chem. Rev., 254, 1072, 10.1016/j.ccr.2009.12.024 Yoksan, 2009, Silver nanoparticles dispersing in chitosan solution: preparation by γ-ray irradiation and their antimicrobial activities, Mater. Chem. Phys., 115, 296, 10.1016/j.matchemphys.2008.12.001 Zaleska-Medynska, 2016, Noble metal- bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties, Adv. Colloid Interface Sci., 229, 80, 10.1016/j.cis.2015.12.008 Zhang, 2014, New gold nanostructures for sensor applications: a review, Materials, 7, 5169, 10.3390/ma7075169 Zezin, 2016, Synthesis of hybrid materials in polyelectrolyte matrixes: control over sizes and spatial organization of metallic nanostructures, Polym. Sci. C, 58, 118 Zezin, 2015, Efficient size control of copper nanoparticles generated in irradiated aqueous solutions of star-shaped polyelectrolyte containers, Phys. Chem. Chem. Phys., 17, 11490, 10.1039/C5CP00269A Zezin, 2011, Formation of metal−polymer hybrid nanostructures during radiation-induced reduction of metal ions in poly(acrylic acid)–poly(ethylenimine) complexes, Polym. Sci. C, 53, 61 Zezin, 2011, The formation of metal nanoparticles in polyacrylic acid – polyethylenimine complexes upon reduction of copper (II) ions using X-ray irradiation, High Energy Chem., 45, 99, 10.1134/S0018143911020147 Zezin, 2010, From triple iterpolyelectrolyte−metal complexes to polymer−metal nanocomposites, Adv. Colloid Interface Sci., 158, 84, 10.1016/j.cis.2009.09.002 Zezin, 2009, Reduction of copper(II) ions in polyacrylic acid−polyethyleneimine complexes using x-ray radiation, High Energy Chem., 43, 100, 10.1134/S0018143909020064 Zezin, 2007, The peculiarities of formation of the metal nanoparticles in irradiated polymer metal complexes, Nucl. Instrum. Methods Phys. Res. B, 265, 334, 10.1016/j.nimb.2007.08.068 Zezin, 1977, Ternary polymer metal complexes on basis of poly(acrylic acid), linear polyethyleneimine and copper, Vysokomol. Soedin. Ser. A, 19, 118