Controlled phase gate and Grover’s search algorithm on two distant NV-centers assisted by an NAMR
Tóm tắt
We propose a scheme to construct a controlled phase gate on two distant nitrogen-vacancy centers (NV-centers) assisted by a quantized nanomechanical cantilevel resonator (NAMR). Unlike the previous work to complete the gate in the dispersive regime to let NV-centers detune with the NAMR largely, our gate is completed by using resonant operations between NV-centers and the NAMR, and single-qubit operations on the NV-center, which let the gate to be achieved within a short time with a high fidelity. To study the performance of the gate for universal quantum computation, we simulate a two-qubit Grover’s search algorithm on the NV-centers with a fidelity of $$98.46\%$$.
Tài liệu tham khảo
Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)
Wei, S.J., Long, G.L.: Duality quantum computer and the efficient quantum simulations. Quantum Inf. Proc. 15, 1189 (2016)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)
Haack, G., Helmer, F., Mariantoni, M., Marquardt, F., Solano, E.: Resonant quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514 (2010)
Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)
Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling \(n\) qubits in a cavity. Phys. Rev. A 82, 062326 (2010)
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)
Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum gates with “Hot” trapped ions. Phys. Rev. Lett. 81, 1322 (1998)
Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)
Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)
Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature (London) 393, 344 (1998)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Xin, T., Pedernales, J.S., Solano, E., Long, G.L.: Entanglement measures in embedding quantum simulators with nuclear spins. Phys. Rev. A 97, 022322 (2018)
Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Oark, D., Piermarochi, C., Sham, J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)
Nemot, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Gao, Y.P., Cao, C., Wang, T.J., Zhang, Y., Wang, C.: Cavity-mediated coupling of phonons and magnons. Phys. Rev. A 96, 023826 (2017)
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)
Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature (London) 431, 159 (2004)
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)
Ye, B.L., Zheng, Z.F., Yang, C.P.: Multiplex-controlled phase gate with qubits distributed in a multicavity system. Phys. Rev. A 97, 062336 (2018)
Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)
Hong, Z.P., Liu, B.J., Cai, J.Q., Zhang, X.D., Hu, Y., Wang, Z.D., Xue, Z.Y.: Implementing universal nonadiabatic holonomic quantum gates with transmons. Phys. Rev. A 97, 022332 (2018)
Xu, Y., Cai, W., Ma, Y., Mu, X., Hu, L., Chen, T., Wang, H., Song, Y.P., Xue, Z.Y., Yin, Z.Q., Sun, L.: Single-loop realization of arbitrary nonadiabatic holonomic single-qubit quantum gates in a superconducting circuit. Phys. Rev. Lett. 121, 110501 (2018)
Feng, W., Zhang, C., Wang, Z., Qin, L.P., Li, X.Q.: Gradual partial-collapse theory for ideal nondemolition longitudinal readout of qubits in circuit QED. Phys. Rev. A 98, 022121 (2018)
Hua, M., Tao, M.J., Alsaedi, A., Hayat, T., Deng, F.G.: Universal distributed quantum computing on superconducting qutrits with dark photons. Annalen der Physik 530, 1700402 (2018)
Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)
Yang, W.L., Yin, Z.Q., Hu, Y., Feng, M., Du, J.F.: High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation. Phys. Rev. A 84, 010301(R) (2011)
Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)
Ekinci, K.L., Roukes, M.L.: Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)
Verbridge, S.S., Craighead, H.G., Parpia, J.M.: A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008)
Rabl, P., Cappellaro, P., Dutt, M.V.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302(R) (2009)
Wrachtrup, J.: Schrödinger’s cat is still alive. Nat. Phys. 5, 248 (2009)
Xu, Z.Y., Hu, Y.M., Yang, W.L., Feng, M., Du, J.F.: Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantileve. Phys. Rev. A 80, 022335 (2009)
Zhou, L.G., Wei, L.F., Gao, M., Wang, X.B.: Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys. Rev. A 81, 042323 (2010)
Kolkowitz, S., Jayich, A.C.B., Unterreithmeier, Q.P., Bennett, S.D., Rabl, P., Harris, J.G.E., Lukin, M.D.: Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603 (2012)
Pigeau, B., Rohr, S., de Lépinay, L.M., Gloppe, A., Jacques, V., Arcizet, O.: Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system. Nat. Commun. 6, 8603 (2015)
Li, X.X., Li, P.B., Ma, S.L., Li, F.L.: Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Sci. Rep. 7, 14116 (2017)
Wang, Z.H., de Lange, G., Ristè, D., Hanson, R., Dobrovitski, V.V.: Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond. Phys. Rev. B 85, 155204 (2012)
Wang, H.J., Shin, C.S., Avalos, C.E., Seltzer, S.J., Budker, D., Pines, A., Bajaj, V.S.: Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nat. Commun. 4, 1940 (2013)
Feng, Z.B.: Robust quantum state transfer between a Cooper-pair box and diamond nitrogen-vacancy centers. Phys. Rev. A 91, 032307 (2015)
LaHaye, M.D., Buu, O., Camarota, B., Schwab, K.C.: Approaching the quantum limit of a nanomechanical resonator. Science 304, 74 (2004)
Naik, A., Buu, O., LaHaye, M.D., Armour, A.D., Clerk, A.A., Blencowe, M.P., Schwab, K.C.: Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)
Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75 (2006)
Sidles, J.A., Garbini, J.L., Bruland, K.J., Rugar, D., Züger, O., Hoen, S., Yannoni, C.S.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995)
Manson, N.B., Harrison, J.P., Sellars, M.J.: Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)
Twamley, J., Barrett, S.D.: Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond. Phys. Rev. A 81, 241202(R) (2010)
Dobrovitski, V.V., Fuchs, G.D., Falk, A.L., Santori, C., Awschalom, D.D.: Quantum control over single spins in diamond. Annu. Rev. Condens. Matter Phys. 4, 23 (2013)
Chen, Q., Yang, W.L., Feng, M.: Controllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubits. Phys. Rev. A 86, 022327 (2012)
Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)
Retzker, A., Solano, E., Reznik, B.: Tavis–Cummings model and collective multiqubit entanglement in trapped ions. Phys. Rev. A 75, 022312 (2007)
Zhou, J.H., Liu, T., Feng, M., Yang, W.L., Chen, C.Y., Twamley, J.: Quantum phase transition in a driven Tavis–Cummings model. New J. Phys. 15, 123032 (2013)
Su, W.J., Yang, Z.B., Zhong, Z.R.: Arbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubit. Phys. Rev. A 97, 012329 (2018)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013)
Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)
Bao, N., Bouland, A., Jordan, S.P.: Grover search and the no-signaling principle. Phys. Rev. Lett. 117, 120501 (2016)
Byrnes, T., Forster, G., Tessler, L.: Generalized Groveri’s algorithm for multiple phase inversion states. Phys. Rev. Lett. 120, 060501 (2018)
Tulsi, A.: Quantum search algorithm tailored to clause-satisfaction problems. Phys. Rev. A 91, 052322 (2015)
Matsuzaki, Y., Zhu, X., Kakuyanagi, K., Toida, H., Shimooka, T., Mizuochi, N., Nemoto, K., Semba, K., Munro, W.J., Yamaguchi, H., Saito, S.: Improving the lifetime of the nitrogen-vacancy-center ensemble coupled with a superconducting flux qubit by applying magnetic fields. Phys. Rev. A 91, 042329 (2015)
Bassett, L.C., Heremans, F.J., Yale, C.G., Buckley, B.B., Awschalom, D.D.: Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett. 107, 266403 (2011)
Bernien, H., Childress, L., Robledo, L., Markham, M., Twitchen, D., Hanson, R.: Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 043604 (2012)
Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature (London) 514, 72 (2014)
Wang, Z.L., Zhong, Y.P., He, L.J., Wang, H., Martinis, J.M., Cleland, A.N., Xie, Q.W.: Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013)