Controlled patterning of aligned self-assembled peptide nanotubes

Nature Nanotechnology - Tập 1 Số 3 - Trang 195-200 - 2006
Meital Reches1,2, Ehud Gazit3
1Department of chemistry and chemical biology, Harvard University, Cambridge, USA.
2Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
3Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhong, Z. H., Wang, D. L., Cui, Y., Bockrath, M. W. & Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377–1379 (2003).

Modi, A., Koratkar, N., Lass, E., Wei, B. Q. & Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171–174 (2003).

Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).

Sarikaya, M., Tamerler, C., Jen, A. K., Schulten, K. & Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E. & Hazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture Nature 366, 324–327 (1993).

Banerjee, I. A., Yu, L. & Matsui, H. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl Acad. Sci. USA 100, 14678–14682 (2003).

Hartgerink, J. D., Beniash, E. & Stupp. S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997).

Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Science 303, 213–217 (2004).

Vauthey, S., Santoso, S., Gong, H. Y., Watson, N. & Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl Acad. Sci. USA 99, 5355–5360 (2002).

Zhao, X. & Zhang, S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol. 22, 470–476 (2004).

Hamada, D., Yanagihara, I. & Tsumoto, K. Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol. 22, 93–97 (2004).

Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

Adler-Abramovich, L. et al. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22, 1313–1320 (2006).

Kol, N. et al. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 5, 1343–1346 (2005).

Yemini, M., Reches, M., Rishpon, J. & Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 5, 183–186 (2005).

Li, W. Z. et al. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

Terrones, M. et al. Controlled production of aligned-nanotube bundles. Nature 388, 52–55 (1997).

Ren, Z. F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

Wang, Z. L & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

Song, Y. J. et al. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Commun. 1044–1045 (2004).

Gorbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).

Gorbitz, C. H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide. Chem. Commun. 2332–2334 (2006).

Asherie, N. Protein crystallization and phase diagrams. Methods 34, 266–272.

Reches, M. & Gazit, E. Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Israel J. Chem. 45, 363–371 (2005).

Banerjee, I. A. et al. Magnetic nanotube fabrication by using bacterial magnetic nanocrystals. Adv. Mater. 17, 1128–1131 (2005).