Controlled manipulation of a bio-particle using trolling mode atomic force microscope: a simulation study

Seyede Zahra Mohammadi1, Hossein Nejat Pishkenari2, Majid M. Moghaddam1, Mohammadreza Sajjadi3
1Mechatronics lab., Mechanical Engineering Department, Tarbiat Modares University, Tehran, Iran
2Nanorobotics Lab, Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
3School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdi A, Pishkenari HN, Keramati R, Minary-Jolandan M (2015) Dynamics of the nanoneedle probe in trolling mode AFM. Nanotechnology 26(20):205702

Babahosseinia H, Mahboobib SH, Vakilzadehc MK, Alastyc A, Meghdaric A (2013) Optimal sliding mode control for atomic force microscope tip positioning during nano-manipulation process. Sci Iran 20(6):2285–2296

Eigler DM (1993) Atom manipulation with the scanning tunneling microscope. In: Atomic and nanometer-scale modification of materials: fundamentals and applications. Springer, pp 1–10

Falvo MR, Superfine R (2000) Mechanics and friction at the nanometer scale. J Nanoparticle Res [Internet];2(3):237–48. Available from: https://doi.org/10.1023/A:1010017130136

Fang Y, Feemster M, Dawson D, Jalili NM (2005) Nonlinear control techniques for an atomic force microscope system. J Control Theory Appl 3(1):85–92

Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ (2002) Imaging and manipulation of biological structures with the AFM. Micron [Internet];33(4):385–97. Available from: https://www.sciencedirect.com/science/article/pii/S0968432801000269

Guthold M, Falvo MR, Matthews WG, Paulson S, Washburn S, Erie DA et al (2000) Controlled manipulation of molecular samples with the nanoManipulator. IEEE/ASME Trans Mechatronics 5(2):189–198

Haghighi MS, Sajjadi M, Pishkenari HN (2020) Model-based topography estimation in trolling mode atomic force microscopy. Appl Math Model 77:1025–1040

Hoshiar AK, Le TA, Amin FU, Kim MO, Yoon J (2017) A novel magnetic actuation scheme to disaggregate nanoparticles and enhance passage across the blood-brain barrier. Nanomaterials;8(1)

Hoshiar AK, Le T-A, Amin FU, Kim MO, Yoon J (2017) Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels. J Magn Magn Mater [Internet];427:181–7. Available from: http://www.sciencedirect.com/science/article/pii/S030488531632892X

Kim S, Shafiei F, Ratchford D, Li X (2011) Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22(11):957–4484

Korayem MH, Khaksar H (2020) A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. J Nanoparticle Res 22(1):27

Korayem MH, Mahmoodi Z, Mohammadi M (2018) 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect. J Theor Biol 436:105–119

Korayem MH, Taheri M (2013) Modeling of various contact theories for the manipulation of different biological micro/nanoparticles based on AFM. J Nanoparticle Res [Internet];16(1):2156. Available from: https://doi.org/10.1007/s11051-013-2156-6

Korayem MH, Saraee MB, Mahmoodi Z, Dehghani S (2015) Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM. J Nanoparticle Res [Internet];17(11):439. Available from: https://doi.org/10.1007/s11051-015-3240-x

Lam KH, Li Y, Li Y, Lim HG, Zhou Q, Shung KK (2016) Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci Rep [Internet];6:37554. Available from: https://doi.org/10.1038/srep37554

Li MQ (1999) Scanning probe microscopy (STM/AFM) and applications in biology. Appl Phys A [Internet];68(2):255–8. Available from: https://doi.org/10.1007/s003390050884

McCarty GS, Love JC, Kushmerick JG, Charles LF, Keating CD, Toleno BJ, et al. (1999) Probing single nanometer-scale particles with scanning tunneling microscopy and spectroscopies. J Nanoparticle Res [Internet];1(4):459–66. Available from: https://doi.org/10.1023/A:1010048032304

Minary Jolandan M (2011) Scanning probe microscopy of biomaterials and nanoscale biomechanics. University of Illinois at Urbana-Champaign

Minary-Jolandan M, Yu M-F (2013) Nanomechanical imaging of soft samples in liquid using atomic force microscopy. J Appl Phys 114(13):134313

Minary-Jolandan M, Tajik A, Wang N, Yu M-F (2012) Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip. Nanotechnology 23(23):235704

Mohammadi SZ, Moghaddam M, Pishkenari HN (2019) Dynamical modeling of manipulation process in trolling-mode AFM. Ultramicroscopy;197

Mohammadi SZ, Nejat Pishkenari H, Mohammadi Moghaddam M (2021) 3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell. J Nanoparticle Res [Internet];23(4):99. Available from: https://doi.org/10.1007/s11051-021-05189-2

Ricotti L, Menciassi A (2015) Nanotechnology in biorobotics: opportunities and challenges. J Nanoparticle Res 17(2):84

Rubio-Sierra FJ, Stark RW, Thalhammer S, Heckl WM (2003) Force-feedback joystick as a low-cost haptic interface for an atomic-force-microscopy nanomanipulator. Appl Phys A [Internet];76(6):903–6. Available from: https://doi.org/10.1007/s00339-002-1973-8

Saeidpourazar R, Jalili N (2009) Towards microcantilever-based force sensing and manipulation: modeling, control development and implementation. Int J Rob Res 28(4):464–483

Sajjadi M, Pishkenari HN, Vossoughi G (2017) Dynamic modeling of trolling-mode AFM: considering effects of cantilever torsion, nanoneedle flexibility and liquid-nanoneedle interactions. Ultramicroscopy 182:99–111

Sajjadi M, Pishkenari HN, Vossoughi G (2018) On the nonlinear dynamics of trolling-mode AFM: analytical solution using multiple time scales method. J Sound Vib 423:263–286

Sajjadi M, Pishkenari HN, Vossoughi G (2020) Image acquisition for trolling-mode atomic force microscopy based on dynamical equations of motion. Proc Inst Mech Eng Part C J Mech Eng Sci [Internet];0954406220977554. Available from: https://doi.org/10.1177/0954406220977554

Sitti M (2001) Survey of nanomanipulation systems. In: Nanotechnology, 2001 IEEE-NANO 2001 Proceedings of the 2001 1st IEEE Conference on. 75–80

Sitti M (2004) Atomic force microscope probe based controlled pushing for nanotribological characterization. IEEE/ASME Trans Mechatronics 9(2):343–349

Sitti M, Hashimoto H (2000) Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans Mechatronics 5(2):199–211

Sitti M, Aruk B, Shintani H, Hashimoto H (2003) Scaled teleoperation system for nano-scale interaction and manipulation. Adv Robot 17(3):275–291

Sitti M (2003) Teleoperated and automatic nanomanipulation systems using atomic force microscope probes. In: ASME 2003 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers; 1371–6

Sitti M, Hashimoto H (1998) Tele-nanorobotics using atomic force microscope. In: Intelligent Robots and Systems, 1998 Proceedings, 1998 IEEE/RSJ International Conference on. IEEE. p. 1739–46

Sun B, Wang MD (2017) Chapter three: single-molecule optical-trapping techniques to study molecular mechanisms of a replisome. In: Spies M, Chemla YR, editors. Methods in Enzymology [Internet]. Academic Press; 55–84. Available from: http://www.sciencedirect.com/science/article/pii/S0076687916302488