Controlled manipulation of a bio-particle using trolling mode atomic force microscope: a simulation study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdi A, Pishkenari HN, Keramati R, Minary-Jolandan M (2015) Dynamics of the nanoneedle probe in trolling mode AFM. Nanotechnology 26(20):205702
Babahosseinia H, Mahboobib SH, Vakilzadehc MK, Alastyc A, Meghdaric A (2013) Optimal sliding mode control for atomic force microscope tip positioning during nano-manipulation process. Sci Iran 20(6):2285–2296
Eigler DM (1993) Atom manipulation with the scanning tunneling microscope. In: Atomic and nanometer-scale modification of materials: fundamentals and applications. Springer, pp 1–10
Falvo MR, Superfine R (2000) Mechanics and friction at the nanometer scale. J Nanoparticle Res [Internet];2(3):237–48. Available from: https://doi.org/10.1023/A:1010017130136
Fang Y, Feemster M, Dawson D, Jalili NM (2005) Nonlinear control techniques for an atomic force microscope system. J Control Theory Appl 3(1):85–92
Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ (2002) Imaging and manipulation of biological structures with the AFM. Micron [Internet];33(4):385–97. Available from: https://www.sciencedirect.com/science/article/pii/S0968432801000269
Guthold M, Falvo MR, Matthews WG, Paulson S, Washburn S, Erie DA et al (2000) Controlled manipulation of molecular samples with the nanoManipulator. IEEE/ASME Trans Mechatronics 5(2):189–198
Haghighi MS, Sajjadi M, Pishkenari HN (2020) Model-based topography estimation in trolling mode atomic force microscopy. Appl Math Model 77:1025–1040
Hoshiar AK, Le TA, Amin FU, Kim MO, Yoon J (2017) A novel magnetic actuation scheme to disaggregate nanoparticles and enhance passage across the blood-brain barrier. Nanomaterials;8(1)
Hoshiar AK, Le T-A, Amin FU, Kim MO, Yoon J (2017) Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels. J Magn Magn Mater [Internet];427:181–7. Available from: http://www.sciencedirect.com/science/article/pii/S030488531632892X
Kim S, Shafiei F, Ratchford D, Li X (2011) Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures. Nanotechnology 22(11):957–4484
Korayem MH, Khaksar H (2020) A survey on dynamic modeling of manipulation of nanoparticles based on atomic force microscope and investigation of involved factors. J Nanoparticle Res 22(1):27
Korayem MH, Mahmoodi Z, Mohammadi M (2018) 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect. J Theor Biol 436:105–119
Korayem MH, Taheri M (2013) Modeling of various contact theories for the manipulation of different biological micro/nanoparticles based on AFM. J Nanoparticle Res [Internet];16(1):2156. Available from: https://doi.org/10.1007/s11051-013-2156-6
Korayem MH, Saraee MB, Mahmoodi Z, Dehghani S (2015) Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM. J Nanoparticle Res [Internet];17(11):439. Available from: https://doi.org/10.1007/s11051-015-3240-x
Lam KH, Li Y, Li Y, Lim HG, Zhou Q, Shung KK (2016) Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci Rep [Internet];6:37554. Available from: https://doi.org/10.1038/srep37554
Li MQ (1999) Scanning probe microscopy (STM/AFM) and applications in biology. Appl Phys A [Internet];68(2):255–8. Available from: https://doi.org/10.1007/s003390050884
McCarty GS, Love JC, Kushmerick JG, Charles LF, Keating CD, Toleno BJ, et al. (1999) Probing single nanometer-scale particles with scanning tunneling microscopy and spectroscopies. J Nanoparticle Res [Internet];1(4):459–66. Available from: https://doi.org/10.1023/A:1010048032304
Minary Jolandan M (2011) Scanning probe microscopy of biomaterials and nanoscale biomechanics. University of Illinois at Urbana-Champaign
Minary-Jolandan M, Yu M-F (2013) Nanomechanical imaging of soft samples in liquid using atomic force microscopy. J Appl Phys 114(13):134313
Minary-Jolandan M, Tajik A, Wang N, Yu M-F (2012) Intrinsically high-Q dynamic AFM imaging in liquid with a significantly extended needle tip. Nanotechnology 23(23):235704
Mohammadi SZ, Moghaddam M, Pishkenari HN (2019) Dynamical modeling of manipulation process in trolling-mode AFM. Ultramicroscopy;197
Mohammadi SZ, Nejat Pishkenari H, Mohammadi Moghaddam M (2021) 3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell. J Nanoparticle Res [Internet];23(4):99. Available from: https://doi.org/10.1007/s11051-021-05189-2
Ricotti L, Menciassi A (2015) Nanotechnology in biorobotics: opportunities and challenges. J Nanoparticle Res 17(2):84
Rubio-Sierra FJ, Stark RW, Thalhammer S, Heckl WM (2003) Force-feedback joystick as a low-cost haptic interface for an atomic-force-microscopy nanomanipulator. Appl Phys A [Internet];76(6):903–6. Available from: https://doi.org/10.1007/s00339-002-1973-8
Saeidpourazar R, Jalili N (2009) Towards microcantilever-based force sensing and manipulation: modeling, control development and implementation. Int J Rob Res 28(4):464–483
Sajjadi M, Pishkenari HN, Vossoughi G (2017) Dynamic modeling of trolling-mode AFM: considering effects of cantilever torsion, nanoneedle flexibility and liquid-nanoneedle interactions. Ultramicroscopy 182:99–111
Sajjadi M, Pishkenari HN, Vossoughi G (2018) On the nonlinear dynamics of trolling-mode AFM: analytical solution using multiple time scales method. J Sound Vib 423:263–286
Sajjadi M, Pishkenari HN, Vossoughi G (2020) Image acquisition for trolling-mode atomic force microscopy based on dynamical equations of motion. Proc Inst Mech Eng Part C J Mech Eng Sci [Internet];0954406220977554. Available from: https://doi.org/10.1177/0954406220977554
Sitti M (2001) Survey of nanomanipulation systems. In: Nanotechnology, 2001 IEEE-NANO 2001 Proceedings of the 2001 1st IEEE Conference on. 75–80
Sitti M (2004) Atomic force microscope probe based controlled pushing for nanotribological characterization. IEEE/ASME Trans Mechatronics 9(2):343–349
Sitti M, Hashimoto H (2000) Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans Mechatronics 5(2):199–211
Sitti M, Aruk B, Shintani H, Hashimoto H (2003) Scaled teleoperation system for nano-scale interaction and manipulation. Adv Robot 17(3):275–291
Sitti M (2003) Teleoperated and automatic nanomanipulation systems using atomic force microscope probes. In: ASME 2003 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers; 1371–6
Sitti M, Hashimoto H (1998) Tele-nanorobotics using atomic force microscope. In: Intelligent Robots and Systems, 1998 Proceedings, 1998 IEEE/RSJ International Conference on. IEEE. p. 1739–46