Controlled direct growth of Al<sub>2</sub>O<sub>3</sub>-doped HfO<sub>2</sub> films on graphene by H<sub>2</sub>O-based atomic layer deposition

Physical Chemistry Chemical Physics - Tập 17 Số 5 - Trang 3179-3185
Li Zheng1,2,3,4,5, Xinhong Cheng1,2,3,4,5, Yuehui Yu1,2,3,4,5, Ya‐Hong Xie6,7,8, Xiaolong Li3,9,10, Zhongjian Wang1,2,3,4,5
1Chinese Academy of sciences
2Institute of Microsystem and Information Technology
3P. R. China
4Shanghai 200050
5State Key Laboratory of Functional Materials for Informatics, Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, P. R. China
6California 90095
7Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
8University of California, Los Angeles
9Shanghai 200061
10Shanghai Synchrotron Radiation Facility, Zhangheng Road 239,Shanghai 200061,P. R. China

Tóm tắt

Al2O3-doped HfO2 with both amorphous state and high relative permittivity was directly deposited on graphene by atomic layer deposition.

Từ khóa


Tài liệu tham khảo

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Balandin, 2008, Nano Lett., 8, 902, 10.1021/nl0731872

Nolotin, 2008, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024

Stoller, 2008, Nano Lett., 8, 3498, 10.1021/nl802558y

Chae, 2013, Nat. Mater., 12, 403, 10.1038/nmat3572

Addou, 2013, Nat. Nanotechnol., 8, 41, 10.1038/nnano.2012.217

Farmer, 2009, Nano Lett., 9, 4474, 10.1021/nl902788u

Hong, 2009, Phys. Rev. Lett., 102, 136808, 10.1103/PhysRevLett.102.136808

Mehr, 2012, IEEE Electron Device Lett., 33, 691, 10.1109/LED.2012.2189193

Sangwan, 2013, Nano Lett., 13, 1162, 10.1021/nl3045553

Zou, 2010, Phys. Rev. Lett., 105, 126601, 10.1103/PhysRevLett.105.126601

Wang, 2012, Nano Lett., 12, 3706, 10.1021/nl3014956

Shin, 2012, Appl. Phys. Lett., 101, 033507, 10.1063/1.4737645

Lee, 2008, Appl. Phys. Lett., 92, 203102, 10.1063/1.2928228

Farmer, 2009, Appl. Phys. Lett., 21, 213106, 10.1063/1.3142865

Kim, 2009, Appl. Phys. Lett., 94, 062107, 10.1063/1.3077021

Hollander, 2011, Nano Lett., 11, 3601, 10.1021/nl201358y

Zheng, 2014, ACS Appl. Mater. Interfaces, 6, 7014, 10.1021/am501690g

Zheng, 2014, J. Vac. Sci. Technol., A, 32, 01A103, 10.1116/1.4828361

Zheng, 2014, Appl. Phys. Lett., 104, 023112, 10.1063/1.4861861

Robertson, 2008, J. Appl. Phys., 104, 124111, 10.1063/1.3041628

Vanderbilt, 2005, Thin Solid Films, 486, 125, 10.1016/j.tsf.2004.11.232

Alles, 2011, Cent. Eur. J. Phys., 9, 319

Renault, 2002, J. Vac. Sci. Technol., A, 20, 1867, 10.1116/1.1507330

Jeong, 2014, Appl. Surf. Sci., 292, 852, 10.1016/j.apsusc.2013.12.061

Deok-Yong, 2012, Chem. Mater., 24, 3534, 10.1021/cm3001199

van den Brand, 2004, J. Phys. Chem. B, 108, 6017, 10.1021/jp037877f

J. Qu , Physical Chemistry, China Renmin University Press, Beijing, China, 2009

Cho, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 132102, 10.1103/PhysRevB.78.132102

Chaaya, 2014, J. Phys. Chem. C, 118, 3811, 10.1021/jp411970w

Hong, 2005, J. Vac. Sci. Technol., A, 23, 1413, 10.1116/1.2011401

Aarik, 2004, Thin Solid Films, 466, 41, 10.1016/j.tsf.2004.01.110

Yang, 1999, IEEE Trans. Electron Devices, 46, 1500, 10.1109/16.772500

Luo, 2004, IEEE Electron Device Lett., 25, 655, 10.1109/LED.2004.834634

Fang, 2007, Appl. Phys. Lett., 91, 092109, 10.1063/1.2776887

Xia, 2009, Nat. Nanotechnol., 4, 505, 10.1038/nnano.2009.177

Cho, 2004, Appl. Phys. Lett., 84, 571, 10.1063/1.1633976

An, 2013, J. Phys. D: Appl. Phys., 46, 275301, 10.1088/0022-3727/46/27/275301