Kiểm soát mặt tinh thể của MAPbI3 perovskite để tạo ra pin mặt trời hiệu suất cao và ổn định thông qua điều chỉnh sự hình thành hạt nhân

Nanoscale - Tập 11 Số 1 - Trang 170-177
Yongchao Ma1,2,3,4,5, Pesi Mwitumwa Hangoma1,2,6,5, Woon Ik Park7,8,9,4,10, Jae‐Hong Lim7,11,12,4,10, Yun Kyung Jung13,14,15,5, Jung Hyun Jeong1,2,6,5, Sung Heum Park1,2,3,4,5, Kwang Ho Kim7,4,10,5
1Busan
2Department of Physics, Pukyong National University, Busan, South Korea
3Hybrid Interface Materials Global Frontier Research Group
4Hybrid Interface Materials Global Frontier Research Group, Pusan National University, Busan 46241, South Korea
5SOUTH KOREA
6Pukyong National University
7Busan 46241
8Electronic Convergence Materials Division
9Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET) 101 Soho-ro, Jinju 52851, South Korea
10Pusan National University
11Electrochemistry Department
12Electrochemistry Department, Korea Institute of Materials Science, 797 Changwondaero, Changwon, Gyeongnam, South Korea
13Gyeongnam 50834
14Inje University.
15School of Biomedical Engineering, Inje University, Inje-ro 197, Gimhae, Gyeongnam, 50834, South Korea

Tóm tắt

Mặt tinh thể của MAPbI3 perovskite được kiểm soát một cách có chủ đích nhằm đạt được các tế bào quang điện hiệu suất cao và ổn định thông qua việc điều chỉnh sự hình thành hạt nhân.

Từ khóa


Tài liệu tham khảo

Tsai, 2018, Science, 360, 67, 10.1126/science.aap8671

Deng, 2018, Nat. Energy, 3, 560, 10.1038/s41560-018-0153-9

Wang, 2018, Nat. Commun., 9, 2225, 10.1038/s41467-018-04636-4

Lee, 2018, J. Am. Chem. Soc., 140, 6317, 10.1021/jacs.8b01037

Ha, 2018, Nanoscale, 10, 13187, 10.1039/C8NR02903B

Leblebici, 2016, Nat. Energy, 1, 16093, 10.1038/nenergy.2016.93

Yin, 2015, J. Phys. Chem. Lett., 6, 1396, 10.1021/acs.jpclett.5b00431

deQuilettes, 2015, Science, 348, 683, 10.1126/science.aaa5333

Tress, 2015, Adv. Energy Mater., 5, 1400812, 10.1002/aenm.201400812

Xie, 2017, Energy Environ. Sci., 10, 1942, 10.1039/C7EE01675A

Zuo, 2017, J. Phys. Chem. Lett., 8, 684, 10.1021/acs.jpclett.6b02812

Zhang, 2018, Energy Environ. Sci., 11, 2253, 10.1039/C8EE00580J

Lei, 2018, Nanoscale, 10, 8088, 10.1039/C8NR00898A

Feng, 2018, Adv. Mater., 30, 1801418, 10.1002/adma.201801418

Wu, 2018, Adv. Mater., 30, 1703670, 10.1002/adma.201703670

Zhang, 2016, Adv. Mater. Interfaces, 3, 1600327, 10.1002/admi.201600327

Kim, 2018, Adv. Energy Mater., 8, 1702369, 10.1002/aenm.201702369

Ma, 2018, Nanoscale, 10, 9628, 10.1039/C8NR01717D

Zhou, 2015, J. Phys. Chem. Lett., 6, 4827, 10.1021/acs.jpclett.5b01843

Zhao, 2018, Nat. Commun., 9, 1607, 10.1038/s41467-018-04029-7

Xiao, 2018, Nanoscale, 10, 12141, 10.1039/C8NR03580F

Dong, 2018, Adv. Funct. Mater., 28, 1704836, 10.1002/adfm.201704836

Meng, 2018, Adv. Mater., 30, 1706401, 10.1002/adma.201706401

Munir, 2017, Adv. Mater., 29, 1604113, 10.1002/adma.201604113

Sonar, 2010, J. Mater. Chem., 20, 3626, 10.1039/b924404b

Wang, 2018, RSC Adv., 8, 18406, 10.1039/C8RA01187G

Liu, 2017, Adv. Mater., 29, 1606774, 10.1002/adma.201606774

Yan, 2015, J. Am. Chem. Soc., 137, 4460, 10.1021/jacs.5b00321

Jo, 2016, Adv. Mater. Interfaces, 3, 1500768, 10.1002/admi.201500768

Cao, 2016, J. Am. Chem. Soc., 138, 9919, 10.1021/jacs.6b04924

Liu, 2017, ACS Appl. Mater. Interfaces, 9, 12382, 10.1021/acsami.6b16541

Xie, 2015, ACS Nano, 9, 639, 10.1021/nn505978r

Zuo, 2016, J. Am. Chem. Soc., 138, 15710, 10.1021/jacs.6b09656

Zhu, 2017, ACS Appl. Mater. Interfaces, 9, 6104, 10.1021/acsami.6b15563

Xu, 2018, Adv. Energy Mater., 8, 1703054, 10.1002/aenm.201703054

Chang, 2017, J. Mater. Chem. A, 5, 4803, 10.1039/C6TA10444D

Long, 2016, Nat. Commun., 7, 13503, 10.1038/ncomms13503

Wang, 2017, Energy Environ. Sci., 10, 516, 10.1039/C6EE02941H

Chen, 2014, Nano Lett., 14, 4158, 10.1021/nl501838y