Controlled approximation of the value function in stochastic dynamic programming for multi-reservoir systems

Computational Management Science - Tập 12 - Trang 539-557 - 2015
Luckny Zéphyr1, Pascal Lang1, Bernard F. Lamond1
1Operations and Decision Systems Departement, Université Laval, Quebec, Canada

Tóm tắt

We present a new approach for adaptive approximation of the value function in stochastic dynamic programming. Under convexity assumptions, our method is based on a simplicial partition of the state space. Bounds on the value function provide guidance as to where refinement should be done, if at all. Thus, the method allows for a trade-off between solution time and accuracy. The proposed scheme is experimented in the particular context of hydroelectric production across multiple reservoirs.

Tài liệu tham khảo

Barros MT, Tsai FT, Sl Yang, Lopes JE, Yeh WW (2003) Optimization of large-scale hydropower system operations. J Water Res Plan Manag 129(3):178–188 Castelletti A, de Rigo D, Rizzoli AE, Soncini-Sessa R, Weber E (2007) Neuro-dynamic programming for designing water reservoir network management policies. Control Eng Pract 15(8):1031–1038 Chandramouli V, Raman H (2001) Multireservoir modeling with dynamic programming and neural networks. J Water Res Plan Manag 127(2):89–98 Dickinson PJ (2013) On the exhaustivity of simplicial partitioning. J Glob Optim 58.1:1–15 Foufoula-Georgiou E, Kitanidis PK (1988) Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems. Water Resour Res 24(8):1345–1359 Gal S (1989) The parameter iteration method in dynamic programming. Manag Sci 35(6):675–684 Hiriart-Urruty JB, Lemaréchal C (2001) Fundamentals of convex analysis. Springer, Berlin Kim YO, Eum HI, Lee EG, Ko IH (2007) Optimizing operational policies of a korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction. J Water Resour Plan Manag 133(1):4–14 Krau S, Émiel G, Merleau J (2014) Une méthode d’échantillonnage adaptatif de l’espace des états pour la programmation dynamique appliquée à la gestion de systèmes hydriques. Seminar presentation, CIRRELT, Montréal, January Lang P, Zéphyr L, Lamond B (2014) Computing the expected value function for a multi-reservoir system with highly correlated inflows. In: Guan Y, Liao H (eds) Proceedings of the industrial and systems engineering research conference (ISERC 2014), Montreal, Canada, May 31–June 3. Online: http://www.xcdsystem.com/iie2014/abstract/finalpapers/I111.pdf Moore DW (1992) Simplical mesh generation with applications. PhD thesis Munos R, Moore A (2002) Variable resolution discretization in optimal control. Mach Learn 49(2–3):291–323 Paulavičius R, Žilinskas J (2013) Simplicial global optimization. Springer, Berlin Philpott AB, Guan Z (2008) On the convergence of stochastic dual dynamic programming and related methods. Oper Res Lett 36(4):450–455 Powell WB (2009) What you should know about approximate dynamic programming. Naval Res Logist 56(3):239–249 Rani D, Moreira MM (2010) Simulation-optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24(6):1107–1138 Shawwash ZK, Siu TK, Russell SD (2000) The BC hydro short term hydro scheduling optimization model. IEEE Trans Power Syst 15(3):1125–1131 Tilmant A, Pinte D, Goor Q (2008) Assessing marginal water values in multipurpose multireservoir systems via stochastic programming. Water Resour Res 44(12):W12,431 Yurtal R, Seckin G, Ardiclioglu G (2005) Hydropower optimization for the lower seyhan system in Turkey using dynamic programming. Water Int 30(4):522–529 Zéphyr L (2015) Optimisation stochastique des systémes multi-réservoirs par l’agrégation de scénarios et la programmation dynamique approximative. PhD thesis