Controlled Ledge Profile of Aluminum Smelting Cell Using Sidewalls Heat Exchangers Supplied with Molten Salt
Tóm tắt
Từ khóa
Tài liệu tham khảo
Manolescu P, Duchesne C, Lauzon-Gauthier J, Saevarsdottir G (2022) Net carbon consumption in aluminum electrolysis: impact of anode properties and reduction cell-operation variables. J Sustain Metall 8(3):1167–1179. https://doi.org/10.1007/s40831-022-00556-2
Gunasegaram DR, Molenaar D (2015) Towards improved energy efficiency in the electrical connections of Hall-Heroult cells through finite element analysis (FEA) modeling. J Clean Prod 93:174–192. https://doi.org/10.1016/j.jclepro.2015.01.065
Fleer M, Lorentsen OA, Harvey W, Palsson H, Saevarsdottir G (2010) Heat recovery from the exhaust gas of aluminum reduction cells. In: Johnson JA (ed) Light metals. The Minerals, Metals & Materials Society, Pittsburgh, p 243
Ming Y, Guo Y, Zhou NJ (2014) Simulation and analysis for a heat recycle system on the sidewall of aluminum reduction cells. In: Zhang F (ed) Materials science, mechanical engineering and applied research. Trans Tech Publications Ltd., Zurich, pp 327–331
Barzi YM, Assadi M, Arvesen HM (2014) A novel heat recovery technology from an aluminum reduction cell side walls: experimental and theoretical investigations. In: Grandfield J (ed) Light metals 2014. The Minerals, Metals & Materials Society, Pittsburgh, pp 733–738
Ladam Y, Solheim A, Segatz M, Lorentsen OA (2011) Heat recovery from aluminum reduction cells. In: Lindsay S (ed) Light metals 2011. The Minerals, Metals & Materials Society, Pittsburgh, pp 393–398
Siljan OJ (2006) Electrolysis cell and structural elements to be used therein. United States Patent US7465379 B2
Lamaze AP, Laucournet R, Barthelemy C (2008) Electrolytic cell with a heat exchanger. United States Patent US0271996A1
Namboothiri S, Lavoie P, Cotton D, Taylor MP (2009) Controlled Cooling of Aluminium smelting cells sidewalls using heat exchangers supplied with air. In: Bearne G (ed) Light metals 2009. The Minerals, Metals & Materials Society, Pittsburgh, pp 317–322
Lavoie P, Namboothiri S, Dorreen M, Chen JJJ, Zeigler DP, Taylor MP (2011) Increasing the power modulation window of aluminum smelter pots with shell heat exchanger technology. In: Stephen J (ed) Light metals 2011. The Minerals, Metals & Materials Society, Pittsburgh, pp 369–374
Wang ZW, Gao BL, Shi ZN, Hu XW, Ding YX, Chen GH, Wang C, Tao WJ (2010) Fundamental study on waste heat recovery of aluminum reduction cells. J Mater Metall 9:8–13. https://doi.org/10.3969/j.issn.1671-6620.2010.z1.003
Yang YJ, Tao WJ, Wang ZW, Shi ZN (2021) A numerical approach on waste heat recovery through sidewall heat-exchanging in an aluminum electrolysis cell. Adv Mater Sci Eng 2021:1–9. https://doi.org/10.1155/2021/3573306
Liang XM (2021) Optimization of thermal characteristics and “output side energy saving” of aluminum reduction cell. In: Perander L (ed) Light metals 2021. The Minerals, Metals & Materials Society, Pittsburgh, pp 325–332
Liang GW, Huang ZMJ (2011) Analytical model of parallel thermoelectric generator. Appl Energ 88(12):5193–5199. https://doi.org/10.1016/j.apenergy.2011.07.041
Ming Y, Zhou NJ (2020) Thermodynamic performance analysis of a waste heat power generation system (WHPGS) applied to the sidewalls of aluminum reduction cells. Entropy 22(11):325–332. https://doi.org/10.3390/e22111279
Wang ZQ, Zhou NJ, Guo J (2012) Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell. Phys Procedia 24:546–553. https://doi.org/10.1016/j.phpro.2012.02.080
Tao WJ, Li TF, Wang ZW, Gao BL, Shi ZN, Hu XW, Cui J (2015) Numerical simulation of current distribution in cathode carbon block of an aluminum reduction cell. JOM 67(11):2675–2680. https://doi.org/10.1007/s11837-015-1655-6
Bao SZ, Zhang XG, Qiu SL, He F, Wang HJ, Li G, Wen SY, Leng LY, Wang YF, Zhang FF, Li CL (2022) Study on physical and chemical properties of high potassium electrolyte system and energy saving test in aluminum reduction cells. In: Eskin D (ed) Light metals 2022. The Minerals, Metals & Materials Society, Pittsburgh, pp 441–447
Lalancette F, Desilets M, Pansiot B, LeBreux M, Bilodeau JF (2023) Dimensional reduction of a 3D thermoelectric model to create a reliable and time-efficient 2D model representing an aluminum electrolysis cell. Int J Heat Mass Trans 202:123777. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123777
Diop MA, Fafard M, Shi Z (2021) Numerical and experimental evaluations of cooling strategies and environmental sustainability for the cut-out aluminum reduction pot. J Sustain Metall 7(2):718–731. https://doi.org/10.1007/s40831-021-00373-z
Wang Q, Li BK, Fafard M (2016) Effect of anode change on heat transfer and magnetohydrodynamic flow in aluminum reduction cell. JOM 68(2):610–622. https://doi.org/10.1007/s11837-015-1714-z
Taylor MP, Etzion R, Lavoie P, Tang J (2014) Energy balance regulation, and flexible production: a new frontier for aluminum smelting. Metall Mater Trans E 1:292–302. https://doi.org/10.1007/s40553-014-0029-2
Gheribi AE, Poncsak S, Guerard S, Bilodeau JF, Kiss L, Chartrand P (2017) Thermal conductivity of the sideledge in aluminium electrolysis cells: experiments and numerical modelling. J Chem Phys 146:1–10. https://doi.org/10.1063/1.4978235
Singh R, Das K, Mishra AK, Kalo N (2016) An approach for estimation of cathode voltage drop in an aluminum reduction cell with an inclined carbon block and a copper insert. Trans Indian I Metals 70:1795–1804. https://doi.org/10.1007/s12666-016-0978-5
Blais M, Desilets M, Lacroix M (2013) Optimization of the cathode block shape of an aluminum electrolysis cell. Appl Therm Eng 58:439–446. https://doi.org/10.1016/j.applthermaleng.2013.04.040
Wang FQ, Zhang QS, Liu W, Yang YJ, Wang ZW (2020) Impact of local cathode electrical cut-off on bath-metal two-phase flow in an aluminum reduction cell. Metals 10(1):110. https://doi.org/10.3390/met10010110
Pianykh AA, Bogovalov SV, Tronin IV, Tkacheva OY, Radzyuk AY (2019) 3-D numerical modeling of MHD flows in an aluminum reduction cell. IOP Conf Ser Mater Sci Eng 537:062071. https://doi.org/10.1088/1757-899X/537/6/062071
Zhang HL, Wang QY, Yang S, Li J, Liang JD, Ran L (2020) Numerical investigation of flow field effect on ledge shape in aluminum reduction cell by coupled thermo-flow model. In: Tomsett A (ed) Light metals 2020. The Minerals, Metals & Materials Society, Pittsburgh, pp 517–526
Richard D, Fafard M, Lacroix R, Clery P, Maltais Y (2001) Aluminum reduction cell anode stub hole design using weakly coupled thermo-electro-mechanical finite element models. Finite Elem Anal Des 37:287–304. https://doi.org/10.1016/S0168-874X(00)00044-5
Xu ZG, Song LL, Ju MS, Xue Y (2016) Online monitoring of three-dimensional ledge profile of aluminum electrolytic cell. Adv Intell Syst Res 133:388–392
Solheim A (2011) Some aspects of heat transfer between bath and sideledge in aluminum reduction cells. In: Lindsay S (ed) Light metals 2011. The Minerals, Metals & Materials Society, Pittsburgh, pp 381–386
Wang FQ (2020) Numerical simulation and optimization research of multiple coupled physical fields in aluminum reduction cell, PhD thesis. Northeastern University, Shenyang
Kovacs A, Breward CJW, Einarsrud KE, Halvorsen SA, Nordgard-Hansen E, Manger E, Munch A, Oliver JM (2020) A heat and mass transfer problem for the dissolution of an alumina particle in a cryolite bath. Int J Heat Mass Trans 162:120232. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120232