Controlled Formation of β-Si3N4 on Native Oxidized Silicon Wafers in Ammonia Flow
Tóm tắt
The formation of β-Si3N4 for subsequent growth of AlGaN and GaN heterostructures of silicon wafers has been studied. It is established that the native oxide layer protects the silicon surface from the formation of amorphous silicon nitride when heating in an ammonia flow. Controlled formation of β-Si3N4 at partial ammonia pressures up to 3 × 10–5 Torr is demonstrated. This circumstance makes it possible to perform epitaxy of nitride films without cleaning the growth chamber from ammonia, which is usually required to remove the native silicon oxide by high-vacuum annealing.
Tài liệu tham khảo
O. Ambacher, J. Phys. D: Appl. Phys. 31 (20), 2653 (1998). https://doi.org/10.1088/0022-3727/31/20/001
H. Neumann, Properties of Group III Nitrides, Ed. by J. H. Edgar (Institution of Electrical Engineers, INSPEC, London, United Kingdom, 1994). https://doi.org/10.1002/crat.2170300704
S. W. Kaun, M. H. Wong, U. K. Mishra, and J. S. Speck, Semicond. Sci. Technol. 28, 074001 (2013). https://doi.org/10.1088/0268-1242/28/7/074001
F. Medjdoub, M. Zegaoui, B. Grimbert, et al., Appl. Phys. Express 4 (12), 124101 (2011). https://doi.org/10.1143/APEX.4.124101
H. Sun, A. R. Alt, H. Benedickter, et al., Appl. Phys. Express 3 (9), 094101 (2010). https://doi.org/10.1143/APEX.3.094101
A. Le Louarn, S. Vézian, F. Semond, and J. Massies, J. Cryst. Growth 311 (12), 3278 (2009). https://doi.org/10.1016/j.jcrygro.2009.04.001
Y. Nakada, I. Aksenov, and H. Okumura, Appl. Phys. Lett. 73 (6), 827 (1998). https://doi.org/10.1063/1.122014
S. Vézian, A. Le Louarn, and J. Massies, J. Cryst. Growth 303 (2), 419 (2007). https://doi.org/10.1016/j.jcrysgro.2007.01.007
R. Flammini, P. Allegrini, F. Wiame, et al., Phys. Rev. B 91, 075303 (2015). https://doi.org/10.1103/PhysRevB.91.075303
F. Semond, Y. Cordier, N. Grandjean, et al., Phys. Status Solidi 188 (2), 501 (2001). https://doi.org/10.1002/1521-396X(200112)188:23.0.CO;2-6
S. Tamariz, D. Martin, and N. Grandjean, J. Cryst. Growth 476, 58 (2017). https://doi.org/10.1016/j.jcrysgro.2017.08.006
Y. Kawaguchi, Y. Honda, H. Matsushima, et al., Jpn. J. Appl. Phys. 37 (8B), L966 (1998). https://doi.org/10.1143/JJAP.37.L966
M. Yang and H. S. Ahn, J. Korean Phys. Soc. 54 (6), 2363 (2009). https://doi.org/10.3938/jkps.54.2363
K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Surf. Sci. 164 (2), 367 (1985). https://doi.org/10.1016/0039-6028(85)90753-8
N. Yamabe, Y. Yamamoto, and T. Ohachi, Phys. Status Solidi 8 (5), 1552 (2011). https://doi.org/10.1002/pssc.201000900
S. Gangopadhyay, T. Schmidt, and J. Falta, Phys. Status Solidi B 243 (7), 1416 (2006). https://doi.org/10.1002/pssb.200565439
I.-S. Yu, Ch.-P. Chang, Ch.-P. Yang, et al., Nanoscale Res. Lett. 9 (682), 1 (2014). https://doi.org/10.1186/1556-276X-9-682
J. Kanamori and Y. Sakamoto, Surf. Sci. 242 (1–3), 119 (1991). https://doi.org/10.1016/0039-6028(91)90252-N
J. W. Kim and H. W. Yeom, Phys. Rev. 67 (3), 35304 (2003). https://doi.org/10.1103/PhysRevB.67.035304
Y. Cordier, F. Semond, J. Massies, et al., J. Cryst. Growth 301, 434 (2007). https://doi.org/10.1016/j.jcrysgro.2006.11.286
M. N. Fireman and J. S. Speck, Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics, Ed. by H. Asahi and Y. Horikoshi (Wiley, New York, 2019), p. 73. https://doi.org/10.1002/9781119354987.ch5
I. O. Mayboroda, A. Knizhnik, Yu. V. Grishchenko, et al., J. Appl. Phys. 122 (10), 105305 (2017). https://doi.org/10.1063/1.5002070
L. L. Lev, I. O. Maiboroda, M.-A. Husanu, et al., Nat. Commun. 9 (1), 2653 (2018). /https://doi.org/10.1038/s41467-018-04354-x
S. Vezian, F. Natali, F. Semond, and J. Massies, Phys. Rev. B 69, 125329 (2004). https://doi.org/10.1103/.69.125329
A. L. Corrion, C. Poblenz, F. Wu, and J. S. Speck, J. Appl. Phys. 103, 093529 (2008). https://doi.org/10.1063/1.2919163
S.-W. Han, Y. Noh, M.-G. Jo, et al., IEEE Electron Device Lett. 37 (12), 1613 (2016). https://doi.org/10.1109/led.2016.2621184