Controllable procedural map generation via multiobjective evolution
Tóm tắt
Từ khóa
Tài liệu tham khảo
J. Togelius, M. Preuss, G.N. Yannakakis, Towards multiobjective procedural map generation, in Proceedings of the FDG Workshop on Procedural Content Generation (2010)
J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, G.N. Yannakakis, Multiobjective exploration of the starcraft map space, in Proceedings of the IEEE Conference on Computational Intelligence and Games (CIG) (2010)
T. Adams, Re: optimization-based versus “constructive” pcg (post to the “procedural content generation” google group)
G.S.P. Miller, The definition and rendering of terrain maps, in Proceedings of SIGGRAPH, vol 20 (1986)
J. Olsen, Realtime procedural terrain generation, University of Southern Denmark, Tech. Rep. (2004)
J. Doran, I. Parberry, Controllable procedural terrain generation using software agents, in IEEE Transactions on Computational Intelligence and AI in Games (2010)
R. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra, Integrating procedural generation and manual editing of virtual worlds, in Proceedings of the FDG Workshop on Procedural Content Generation (2010)
J. Togelius, G.N. Yannakakis, K.O. Stanley, C. Browne, Search-based procedural content generation: a taxonomy and survey, in IEEE Transactions on Computational Intelligence and AI in Games, vol in print (2011)
M. Frade, F.F. de Vega, C. Cotta, Evolution of artificial terrains for video games based on accessibility, in Proceedings of the European Conference on Applications of Evolutionary Computation (EvoApplications), vol 6024 (Springer LNCS, 2010), pp. 90–99
N. Sorenson, P. Pasquier, Towards a generic framework for automated video game level creation, in Proceedings of the European Conference on Applications of Evolutionary Computation (EvoApplications), vol 6024 (Springer LNCS, 2010), pp. 130–139
D. Ashlock, T. Manikas, K. Ashenayi, Evolving a diverse collection of robot path planning problems, in Proceedings of the Congress On Evolutionary Computation (2006), pp. 6728–6735
J. Togelius, R. De Nardi, S.M. Lucas, Towards automatic personalised content creation in racing games, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (2007)
C. Pedersen, J. Togelius, G.N. Yannakakis, Modeling player experience in super mario bros, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (2009)
E. Hastings, R. Guha, K.O. Stanley, Evolving content in the galactic arms race video game, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (2009)
J. Togelius, J. Schmidhuber, An experiment in automatic game design, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (2008)
C. Browne, Automatic generation and evaluation of recombination games, Ph.D. dissertation, Queensland University of Technology (2008)
I. Das, J.E. Dennis, A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems, in Structural and Multidisciplinary Optimization, vol 14 (1997), pp. 63–69
J. Koski, Defectiveness of weighting method in multicriterion optimization of structures, Communications in Applied Numerical Methods, vol 1 (1985), pp. 333–337
A. Agapitos, J. Togelius, S.M. Lucas, J. Schmidhuber, A. Konstantinides, Generating diverse opponents with multiobjective evolution, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (2008)
N. van Hoorn, J. Togelius, D. Wierstra, J. Schmidhuber, Robust player imitation with multiobjective evolution, in Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG) (2009)
J. Schrum, R. Miikkulainen, Constructing complex npc behavior via multi-objective neuroevolution, in Proceedings of the Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE) (2008)
F.J. Gomez, J. Togelius, J. Scmidhuber, Measuring and optimizing behavioral complexity for evolutionary reinforcement learning, in Proceedings of the International Conference on Artificial Neural Networks (ICANN) (2009)
J. Togelius, G.N. Yannakakis, K.O. Stanley, C. Browne, Search-based procedural content generation, in Proceedings of the European Conference on Applications of Evolutionary Computation (EvoApplications), vol 6024 (Springer LNCS, 2010)
S. Papert, Teaching children thinking. Massachusetts Institute of Technology AI Memos, Tech. Rep. 247 (1971)
T.W. Malone, What makes computer games fun? Byte 6, 258–277 (1981)
M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience (Harper & Row, New York, 1990)
R. Koster, Theory of Fun for Game Design (O'Reilly Media, Scottsdale, AZ, 2004), p. 256
K. Deb, A. Pratap, S. Agarwal, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)
N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 181(3), 1653–1669 (2007)
K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)
M. López-Ibáñez, L. Paquete, T. Stützle, EAF graphical tools, 2010 (Online). Available: http://iridia.ulb.ac.be/manuel/eaftools
V.G. da Fonseca, C.M. Fonseca, A.O. Hall, Inferential performance assessment of stochastic optimisers and the attainment function, in EMO ’01: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (Springer, London, 2001), pp. 213–225
M. Preuss, C. Kausch, C. Bouvy, F. Henrich, Decision space diversity can be essential for solving multiobjective real-world problems, in MCDM for Sustainable Energy and Transportation Systems, EMO Track, ed. by M. Ehrgott et al. (Springer, Berlin, 2008), pp. 367–377
G. Rudolph, B. Naujoks, M. Preuss, Capabilities of emoa to detect and preserve equivalent pareto subsets, in Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007, Proceedings, ser. Lecture Notes in Computer Science, vol 4403, ed. by S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Springer, 2007), pp. 36–50
J. Hagelbäck, M. Preuss, B. Weber, CIG 2010 StarCraft RTS AI Competition (2010), http://ls11-www.cs.tu-dortmund.de/rts-competition/starcraft-cig2010/
G.N. Yannakakis, How to model and augment player satisfaction: a review, in Proceedings of the 1st Workshop on Child, Computer and Interaction (ACM Press, Chania, Crete, 2008)
E. Wilson, Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927)