Controllable fabrication of solid state nanopores array by electron beam shrinking
Tài liệu tham khảo
Kasianowicz, 1996, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. U. S. A, 93, 13770, 10.1073/pnas.93.24.13770
Xiao, 2018, Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model, Inorg. Chem. Front., 5, 1677, 10.1039/C8QI00397A
Venkatesan, 2011, Nanopore sensors for nucleic acid analysis, Nat. Nanotechnol., 6, 615, 10.1038/nnano.2011.129
Goto, 2020, Solid-state nanopores towards single-molecule DNA sequencing, J. Hum. Genet., 65, 69, 10.1038/s10038-019-0655-8
Qiu, 2018, Optimal voltage for nanoparticle detection with thin nanopores, Analyst, 143, 4638, 10.1039/C8AN01270A
Warkiani, 2013, Isoporous micro/nanoengineered membranes, ACS Nano, 7, 1882, 10.1021/nn305616k
Garalde, 2018, Highly parallel direct RNA sequencing on an array of nanopores, Nat. Methods, 15, 201, 10.1038/nmeth.4577
Huang, 2015, High-throughput optical sensing of nucleic acids in a nanopore array, Nat. Nanotechnol., 10, 986, 10.1038/nnano.2015.189
Yuan, 2018, Solid-state nanopore, Nanoscale Res. Lett., 13, 56, 10.1186/s11671-018-2463-z
Deng, 2020, Fundamental aspects and recent developments in metal surface polishing with energy beam irradiation, Int. J. Mach. Tool Manufact., 148, 103472, 10.1016/j.ijmachtools.2019.103472
Shrestha, 2017, A build surface study of Powder-Bed Electron Beam Additive Manufacturing by 3D thermo-fluid simulation and white-light interferometry, Int. J. Mach. Tool Manufact., 121, 37, 10.1016/j.ijmachtools.2017.04.005
Shinonaga, 2016, Prediction of rounding phenomenon at corner tips in large-area electron beam irradiation, Int. J. Mach. Tool Manufact., 110, 18, 10.1016/j.ijmachtools.2016.08.002
Storm, 2003, Fabrication of solid-state nanopores with single-nanometre precision, Nat. Mater., 2, 537, 10.1038/nmat941
Storm, 2005, Electron-beam-induced deformations of SiO2 nanostructures, J. Appl. Phys., 98, 10.1063/1.1947391
Wu, 2005, Formation of nanopores in a SiN/SiO2 membrane with an electron beam, Appl. Phys. Lett., 87, 10.1063/1.2043247
Kox, 2009, Shrinking solid-state nanopores using electron-beam-induced deposition, Nanotechnology, 20, 115302, 10.1088/0957-4484/20/11/115302
Danelon, 2006, Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition, Langmuir, 22, 10711, 10.1021/la061321c
Chen, 2017, SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores, Nanotechnology, 28, 305301, 10.1088/1361-6528/aa77ad
Chang, 2006, Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope, Appl. Phys. Lett., 88, 375, 10.1063/1.2179131
Prabhu, 2011, SEM-induced shrinking of solid-state nanopores for single molecule detection, Nanotechnology, 22, 425302, 10.1088/0957-4484/22/42/425302
Schenkel, 2003, Formation of a few nanometer wide holes in membranes with a dual beam focused ion beam system, J. Vac. Sci. Technol. B, 21, 2720, 10.1116/1.1622935
Zhang, 2007, Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation, Appl. Phys. Lett., 90, 163102, 10.1063/1.2723680
Lo, 2006, Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams, Nanotechnology, 17, 3264, 10.1088/0957-4484/17/13/031
von Arx, 2000, Process-dependent thin-film thermal conductivities for thermal CMOS MEMS, J. Microelectromech. Syst., 9, 136, 10.1109/84.825788
Vladar, 2005, Electron beam-induced sample contamination in the SEM, Microsc. Microanal., 11, 764, 10.1017/S1431927605507785
Fransen, 1985, Electron and ion beam degradation effects in AES analysis of silicon nitride thin films, Surf. Interface Anal., 7, 79, 10.1002/sia.740070205
Chao, 1987, Auger electron spectroscopy studies of silicon nitride, oxide, and oxynitride thin films: minimization of surface damage by argon and electron beams, J. Vac. Sci. Technol.: Vacuum, Surfaces Films, 5, 1283, 10.1116/1.574791
Kapoor, 1983, Silicon nitride thin insulating films, 83
Goldstein, 1981
Oatley, 1966, The scanning electron microscope, Sci. Prog., 54, 483
Kanaya, 1972, Penetration and energy-loss theory of electrons in solid targets, J. Phys. Appl. Phys., 5, 43, 10.1088/0022-3727/5/1/308
Koops, 1995, Fabrication and characterization of platinum nanocrystalline material grown by electron‐beam induced deposition, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom., 13, 2400, 10.1116/1.588008
Hiroshima, 1998, Fabrication of conductive wires by electron-beam-induced deposition, Nanotechnology, 9, 108, 10.1088/0957-4484/9/2/012
Signore, 2012, Deposition of silicon nitride thin films by RF magnetron sputtering: a material and growth process study, Opt. Mater., 34, 632, 10.1016/j.optmat.2011.09.012
Knotek, 1979, Stability of ionically bonded surfaces in ionizing environments, Surf. Sci., 90, 78, 10.1016/0039-6028(79)90011-6
Garetto, 2005, Growth mechanisms of electron beam induced carbon deposition using hydrocarbon contamination, Microsc. Microanal., 11, 850, 10.1017/S1431927605503325
Chen, 2004, Probing single DNA molecule transport using fabricated nanopores, Nano Lett., 4, 2293, 10.1021/nl048654j
Wanunu, 2012, Nanopores: a journey towards DNA sequencing, Phys. Life Rev., 9, 125, 10.1016/j.plrev.2012.05.010