Controllable Synthesis of a Well-defined Polypropylene grafted Silica Nanoparticles and Its Effect on Crystallization Behavior of Polypropylene
Tóm tắt
Well-defined polypropylene grafted silica nanoparticles (PP-g-SiO2) were prepared through the reaction of maleic anhydride grafted polypropylene (PP-g-MAH) with amino-functionalized silica (SiO2-NH2) by the ‘grafting-to’ method. The grafting density of PP-g-SiO2 is found to be controlled by the concentration of silane coupling agent 3-[2-(2-aminoethylamino) ethyl amino] propyl trimethoxy silane (TAMS). The maximum grafting density of grafted PP-g-MAH chains with molecular weight of 9100 g/mol could reach 0.34 chains/nm2, when the critical concentration of TAMS was 0.0194 mol/L. The critical concentration of TAMS can be explained by the maximum amounts of primary amino groups, which can totally react with PP-g-MAH on the surface of SiO2-NH2, when the silane monolayer is formed. The synthesized PP-g-SiO2 with different molecular weights was mixed with PP by solution mixing to form a series of nanocomposites. The crystallization temperature (Tc) of nanocomposites increased significantly with the particle loading. The PP-g-SiO2 with high molecular weight of grafted chains exhibits a high nucleation ability at 1 wt% nanoparticle loading in PP/PP-g-SiO2 nanocomposites. In summary, we provide an effective method to synthesize the well-defined PP-g-SiO2 with controlled grafting density, which shows excellent nucleation ability.
Tài liệu tham khảo
Li, S. F.; Wen, X. N.; Ju, W. L.; Su, Y. L.; Wang, D. J. Effects of particle-polymer interactions and particle-particle interactions on mechanical properties of polymer nanocomposites. Acta Polymerica Sinica (in Chinese) 2021, 52, 146–154.
Tang, Y.; Hu, Y.; Song, L.; Zong, R. W.; Gui, Z.; Chen, Z. Y.; Fan, W. C. Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym. Degrad. Stabil. 2003, 82, 127–131.
Du, M. I.; Guo, B. C.; Jia, D. M. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur. Polym. J. 2006, 42, 1362–1369.
Du, F. M.; Scogna, R. C.; Zhou, W.; Brand, S.; Fischer, J. E.; Winey, K. I. Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 2004, 37, 9048–9055.
Li, N.; Huang, Y.; Du, F.; He, X. B.; Lin, X.; Gao, H. J.; Ma, Y. F.; Li, F. F.; Chen, Y. S.; Eklund, P. C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 2006, 6, 1141–1145.
Paiva, L. B. D.; Morales, A. R.; Guimarães, T. R. Structural and optical properties of polypropylene—montmorillonite nanocomposites. Mater. Sci. Eng. A 2007, 447, 261–265.
Bharadwaj, R. K. Modeling the barrier properties of polymerlayered silicate nanocomposites. Macromolecules 2001, 34, 9189–9192.
Balart, J.; Fombuena, V.; Balart, R.; España, J. M.; Fenollar, R. N. O. Optimization of adhesion properties of polypropylene by surface modification using acrylic acid photografting. J. Appl. Polym. Sci. 2010, 116, 3256–3264.
Liu, L. Y.; Zhao, Y.; Zhang, C. B.; Dong, Z. Y.; Wang, K. Z.; Wang, D. J. Morphological characteristics of β-nucleating agents governing the formation of the crystalline structure of isotactic polypropylene. Macromolecules 2021, 54, 6824–6834.
Toyonaga, M.; Chammingkwan, P.; Terano, M.; Taniike, T. Well-defined polypropylene/polypropylene-grafted silica nanocomposites: roles of number and molecular weight of grafted chains on mechanistic reinforcement. Polymers 2016, 8, 300/001–013.
Lu, M.; Gao, X. W.; Liu, P.; Tang, H. Y.; Wang, F.; Ding, Y. F.; Zhang, S. M.; Yang, M. S. Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica. Compos. Commun. 2017, 3, 51–58.
Kurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of polypropylene functionalized with a trace amount of reactive functional groups and its utilization in graft-type nanocomposites. Polymer 2018, 158, 46–52.
Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Lehmann, B.; Friedrich, K. Functionalisation of polypropylene by solid phase graft polymerisation and its effect on the mechanical properties of silica nanocomposites. Plast. Rubber. Compos. 2013, 32, 445–450.
Rong, M. Z.; Zhang, M. Q.; Pan, S. L.; Friedrich, K. Interfacial effects in polypropylene-silica nanocomposites. J. Appl. Polym. Sci. 2004, 92, 1771–1781.
Wu, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrichc, K. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 2002, 22, 1327–1340.
Zheng, J. Z.; Zhou, X. P.; Ying, J. R.; Xie, X. L.; Mai, Y. W. Enhanced mechanical properties of polypropylene/silica nanocomposites with surface modification of nano-silica via In situ copolymerization of methyl methacrylate and butyl Acrylate. Chinese J. Polym. Sci. 2009, 27, 685–694.
Taniike, T.; Toyonaga, M.; Terano, M. Polypropylene-grafted nanoparticles as a promising strategy for boosting physical properties of polypropylene-based nanocomposites. Polymer 2014, 55, 1012–1019.
Fukuyama, Y.; Senda, M.; Kawai, T.; Kuroda, S.; Toyonaga, M.; Taniike, T.; Terano, M. The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene. J. Therm. Anal. Calorim. 2014, 117, 1397–1405.
Umemori, M.; Taniike, T.; Terano, M. Influences of polypropylene grafted to SiO2 nanoparticles on the crystallization behavior and mechanical properties of polypropylene/SiO2 nanocomposites. Polym. Bull. 2011, 68, 1093–1108.
Fukuyama, Y.; Kawai, T.; Kuroda, S.; Toyonaga, M.; Taniike, T.; Terano, M. The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. J. Therm. Anal. Calorim. 2013, 113, 1511–1519.
Yuan, W. J.; Wang, F.; Chen, Z. M.; Gao, C.; Liu, P.; Ding, Y. F.; Zhang, S. M.; Yang, M. S. Efficient grafting of polypropylene onto silica nanoparticles and the properties of PP/PP-g-SiO2 nanocomposites Polymer 2018, 151, 242–249.
Grala, M.; Bartczak, Z.; Różański, A. Morphology, thermal and mechanical properties of polypropylene/SiO2 nanocomposites obtained by reactive blending. J. Polym. Res. 2016, 23, 25/01–19.
Wang, W.; Wu, J. S. Interfacial influence on mechanical properties of polypropylene/polypropylene-grafted silica nanocomposites. J. Appl. Polym. Sci. 2018, 135, 45887/00001–00010.
Stöber, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.
Krigbaum, W. R.; Uematsu, I. Heat and entropy of fusion of isotactic polypropylene. J. Polym. Sci., Part A: Polym. Chem. 1965, 3, 767–776.
Krache, R.; Benavente, R.; López-Majada, J. M.; Pereña, J. M.; Cerrada, M. L.; Pérez, E. Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 2007, 40, 6871–6878.
Suratwala, T. I.; Hanna, M. L.; Miller, E. L.; Whitman, P. K.; Thomas, I. M.; Ehrmann, P. R.; Maxwell, R. S.; Burnham, A. K. Surface chemistry and trimethylsilyl functionalization of Stöber silica sols. J. Non Cryst. Solids. 2003, 316, 349–363.
Ek, S.; Iiskola, E. I.; Niinistö, L.; Vaittinen, J.; Pakkanen, T. T.; Root, A. A 29Si and 13C CP/MAS NMR study on the surface species of gas-phase-deposited γ-aminopropylalkoxysilanes on heat-treated silica. J. Phys. Chem. B 2004, 108, 11454–11463.
Zhao, W. W.; Su, Y. L.; Gao, X.; Qian, Q. Y.; Chen, X.; Wittenbrink, R.; Wang, D. J. Confined crystallization behaviors in polyethylene/silica nanocomposites: synergetic effects of interfacial interactions and filler network. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 498–505.
Chen, S.; Hayakawa, S.; Shirosaki, Y.; Fujii, E.; Kawabata, K.; Tsuru, K.; Osaka, A. Sol-gel synthesis and microstructure analysis of amino-modified hybrid silica nanoparticles from aminopropyltriethoxysilane and tetraethoxysilane. J. Am. Ceram. Soc. 2009, 92, 2074–2082.
Rahman, I. A.; Jafarzadeh, M.; Sipaut, C. S. Synthesis of organofunctionalized nanosilica via a co-condensation modification using γ-aminopropyltriethoxysilane (APTES). Ceram. Int. 2009, 35, 1883–1888.
Zhou, H. J.; Rong, M. Z.; Zhang, M. Q.; Ruan, W. H.; Friedrich, K. Role of reactive compatibilization in preparation of nanosilica/polypropylene composites. Polym. Eng. Sci. 2007, 47, 499–509.
Lu, Q. W.; Macosko, C. W.; Horrion, J. Melt amination of polypropylenes. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 4217–4232.
Efremova, N. V.; Sheth, S. R.; Leckband, D. E. Protein-induced changes in poly(ethylene glycol) brushes: molecular weight and temperature dependence. Langmuir 2001, 17, 7628–7636.
Malmsten, M. Formation of adsorbed protein Layers. J. Colloid Interface. Sci. 1998, 207, 186–199.
Gengenbach, T. R.; Griesser, H. J. Aging of 1,3-diaminopropane plasma-deposited polymer films: mechanisms and reaction pathways. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2191–2206.
Chen, J. J.; Yu, Y.; Chen, J. Y.; Li, H. L.; Ji, J. Y.; Liu, D. J. Chemical modification of palygorskite with maleic anhydride modified polypropylene: mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites. Appl. Clay. Sci. 2015, 115, 230–237.
Hashemi-Nasab, R.; Mirabedini, S. M. Effect of silica nanoparticles surface treatment on in situ polymerization of styrene-butyl acrylate latex. Prog. Org. Coat. 2013, 76, 1016–1023.
Wu, F.; Zhang, B.; Yang, W.; Liu, Z. Y.; Yang, M. B. Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 2014, 55, 5760–5772.
Vrancken, K. C.; Casteleyn, E.; Possemiers, K.; Voort, P. V. D.; Vansant, E. F. Modelling of the reaction-phase interaction of γ-aminopropyltriethoxysilane with silica. J. Chem. Soc., Faraday Trans. 1993, 89, 2037–2040.
Simon, A.; Cohen-Bouhacina, T.; Porte, M. C.; Aime, J. P.; Baquey, C. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. J. Colloid Interface Sci. 2002, 251, 278–283.
Ahn, Y. N.; Lee, S. H.; Oh, S. Y. Adsorption characteristics of silane-functionalized perfluoropolyether on hydroxylated glassy silica surfaces: a multiscale approach. Appl. Surf. Sci. 2019, 496.
Nakamura, Y.; Yamazaki, R.; Fukuda, T.; Shitajima, K.; Fujii, S.; Sasaki, M. Structure of silane layer formed on silica particle surfaces by treatment with silane coupling agents having various functional groups. J. Adhes. Sci. Technol. 2014, 28, 1895–1906.
Zhu, M.; Lerum, M. Z.; Chen, W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 2012, 28, 416–423.
Pham, K. N.; Fullston, D.; Sagoe-Crentsil, K. Surface charge modification of nano-sized silica colloid. Aust. J. Chem. 2007, 60, 662–666.
Naviroj, S.; Koenig, J. L.; Ishida, H. Molecular structure of an aminosilane coupling agent as influenced by carbon dioxide in air, pH, and drying conditions. J. Macromol. Sci. B 2006, 22, 291–304.
Wang, D.; Jonesf, F. R. Surface analytical study of the interaction between y-amino propyl triethoxysilane and E-glass surface. J. Mater. Sci. 1993, 28, 2481–2488.
Pallavicini, P.; Cabrini, E.; Casu, A.; Dacarro, G.; Diaz-Fernandez, Y. A.; Falqui, A.; Milanese, C.; Vita, F. Silane-coated magnetic nanoparticles with surface thiol functions for conjugation with gold nanostars. Dalton Trans. 2015, 44, 21088–21098.
Paukkeri, R.; Lehtinen, A. Thermal behaviour of polypropylene fractions: 2. The multiple melting peaks. Polymer 1993, 34, 4083–4088.
Zia, Q.; Androsch, R.; Radusch, H. J.; Piccarolo, S. Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 2006, 47, 8163–8172.
Chen, J. H.; Yao, B. X.; Su, W. B.; Yang, Y. B. Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 2007, 48, 1756–1769.
Rybniář, F. Efficiency of nucleating additives in polypropylene. J. Appl. Polym. Sci. 1969, 13, 827–833.
Mubarak, Y. A.; Abu-Halimeh, R.; Schubert, D. Thermal and morphological properties of polypropylene/styrene-butadiene-styrene nanocomposites. Polym-Plast. Tech. Mater. 2018, 57, 1542–1553.
Zhou, R. J.; Burkhart, T. Polypropylene/SiO2 nanocomposites filled with different nanosilicas: thermal and mechanical properties, morphology and interphase characterization. J. Mater. Sci. 2010, 46, 1228–1238.
Bailly, M.; Kontopoulou, M. Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix. Polymer 2009, 50, 2472–2480.
Xu, N.; Zhou, W.; Shi, W. F. Preparation and enhanced properties of poly(propylene)/silica-grafted-hyperbranched polyester nanocomposites. Polym. Adv. Technol. 2004, 15, 654–661.
Vladimirov, V.; Betchev, C.; Vassiliou, A.; Papageorgiou, G.; Bikiaris, D. Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos. Sci. Technol. 2006, 66, 2935–2944.