Controllable Optical Properties of Multiple Electromagnetically Induced Transparency in Gaseous Atomic Media

Communications in Physics - Tập 29 Số 1 - 2019
Bang Nguyen Huy1, Khoa Dinh Xuan1, Doai Le Van1

Tóm tắt

The advent of electromagnetically induced transparency (EIT) offered a new coherent material with exotic and controllable optical properties. Although, studies on single-EIT are described in detail for single-EIT, however, extension from single- to multi- EIT is currently of current interest due to it gains advantages in multi-channel optical communication, waveguides for optical signal processing and multi-channel quantum information processing. In this work, we review recent research works concerning multi-EIT and some related applications, as controlling group velocity of light, giant Kerr nonlinearity, optical bistability. A special attention of the review also gives for analytical interpretations of EIT spectrum, its dispersion and related applications such as EIT enhanced Kerr nonlinearity and optical bistability to give physics insight. From experimental point of view, a latest development for measuring multi-EIT spectrum and its dispersion in hot medium is presented and compared to theoretical analytical representations.

Từ khóa

#Electromagnetically Induced Transparency

Tài liệu tham khảo

G. Welch, G. Padmabandu, E. Fry, M. Lukin, D. Nikonov, F. Sander, M. Scully, A. Weis, F. Tittel, “Observation of V-type electromagnetically induced transparency in a sodium atomic beam”, Found. Phys. 28 (1998) 621-638.

Y. Wu, and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis”, Phys. Rev. A 71 (2005) 053806.

B.S.Ham, “Nonlinear Optics of Atoms and Electromagnetically Induced Transparency: Dark resonance based optical switching”, J. Mod. Opt., 49 (2002) 2477.

. M.A. Anton, F. Carreno, Oscar G. Calderon, S. Melle, I. Gonzalo, “Optical switching by controlling the double-dark resonances in a N-tripod five-level atom”, Opt. Comm, 281 (2008) 6040-6048.

J. Sheng, X. Yang, H. Wu, and M. Xiao, “Modified self-Kerr-nonlinearity in a four-level N-type atomic system”, Phys. Rev. A 84, 053820 (2011).

L. Ebrahimi Zohravi, R. Doostkam, S. M. Mousavi, and M. Mahmoudi, “Controlling the optical bistability in a Kobrak-Rice 5-level quantum system”, Progr. in Electroma. Res. M, Vol. 25 (2012) 1-11.

D.X. Khoa, L.C. Trung, P.V. Thuan, L.V. Doai and N.H. Bang, “Measurement of dispersive profile of a multi-window EIT spectrum in a Doppler-broadened atomic medium”, J. Opt. Soc. Am. B 34 (6) (2017) 1255-1263.

R. Kumar, V. Gokhroo, and S.N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface”, New J. Phys. 17 (2015) 123012.

J. P. Marangos, “Topical review: Electromagnetically induced transparency”, J. Mod. Opt. 45 (1998) 471-503

F. Carreño, Oscar G. Calderón, M. A. Antón, and Isabel Gonzalo, “Superluminal and slow light in -type three-level atoms via squeezed vacuum and spontaneously generated coherence”, Phys. Rev. A 71, 063805 (2005).

H. M. Gibbs, “Optical Bistability: Controlling Light with Light”, Academic Press, New York, 1985.

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system”, Phys. Rev. A 67, 041801(R) (2003).

A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system”, Phys. Rev. A 67, 041801(R) (2003).

M. Sahrai, H.R. Hamedi and M. Memarzadeh, “Kerr nonlinearity and optical multi-stability in a four-level Y-type atomic system”, J. Mod. Opt., Vol. 59, No. 11, (2012) 980–987.

L. Ebrahimi Zohravi, R. Doostkam, S. M. Mousavi, and M. Mahmoudi, “Controlling the optical bistability in a Kobrak-Rice 5-level quantum system”, Progr. Electrom. Re. M, Vol. 25 (2012) 1-11.