Controllable Intercalated Polyaniline Nanofibers Highly Enhancing the Utilization of Delaminated RuO2 Nanosheets for High‐Performance Hybrid Supercapacitors

ChemElectroChem - Tập 9 Số 9 - 2022
Gaini Zhang1, Lingjuan Deng2, Jinqian Liu1, Jianhua Zhang1, Jingjing Wang1, Wenbin Li1, Xifei Li1
1Xi'an Key Laboratory of New Energy Materials and Devices School of Materials Science and Engineering Xi'an University of Technology Xi'an Shaanxi 710048 China
2College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China

Tóm tắt

AbstractRuthenium oxide (RuO2) and polyaniline (PANI) are attracting extensive attention as electrode materials due to their remarkable pseudocapacitance. However, RuO2 suffers from low utilization and PANI sustains poor stability. Herein, both defects were optimized by designing intercalated‐structure PANI/RuO2 composites, which were fabricated for the first time by controllable chemical polymerization of aniline on the delaminated RuO2 nanosheets. Intercalated PANI nanofibers not only highly prevent the RuO2 nanosheets from their reassembling as well as increase the interlayer spacing among RuO2 nanosheets but also alleviate the swelling/shrinking of PANI during charge‐discharge progress. In comparison to the pristine RuO2 nanosheets, the obtained intercalated structure is beneficial for creating channels for better ion transfer and electron transport, which leads to a high‐efficiency utilization of RuO2 nanosheets. The optimized PANI/RuO2‐38 electrode with a RuO2 content of 61.7 wt% shows the highest utilization of 72.1 % of RuO2, resulting in the highest specific capacity of 816 F g−1. The asymmetric supercapacitor PANI/RuO2//AC offers a high energy density of 25.7 Wh kg−1 at 375 kW kg−1, further indicating a good potential as energy‐storage device.

Từ khóa


Tài liệu tham khảo

10.1016/j.ensm.2018.12.018

10.1038/s41467-021-22912-8

10.1016/j.matpr.2021.02.526

10.1039/C8CS00581H

10.1016/j.nantod.2017.06.009

10.1016/j.electacta.2016.12.171

10.1021/acs.energyfuels.1c01488

10.1038/srep19949

10.1016/j.electacta.2018.05.198

10.1016/j.jpowsour.2007.10.076

10.1002/celc.201900668

10.1039/D1TA07246C

10.1016/j.electacta.2020.137324

10.1016/j.electacta.2019.134879

10.1021/acsanm.0c00579

10.1016/j.cej.2021.130893

10.1021/acsami.6b14331

10.1016/j.electacta.2019.01.095

10.1016/j.electacta.2017.06.019

10.1002/celc.201901898

10.1016/j.jallcom.2020.154962

Zhang J., 2017, ACS Sustainable Chem. Eng., 5

10.1016/j.jpowsour.2020.228444

10.1021/ic100176d

10.1039/C9EN01429B

10.1002/anie.201601494

10.1016/j.jpowsour.2013.09.081

10.1016/j.cej.2021.131988

10.1021/acsami.5b08474

10.1016/j.electacta.2018.01.107

10.1002/zaac.200400012

10.1016/j.est.2021.102579

10.1039/C9TA01993F

10.1016/j.electacta.2020.137053

10.1016/j.mseb.2012.12.002

10.1016/j.ijhydene.2021.08.207

10.1021/sc500247h

10.1021/la9807863

10.1021/acsami.9b01712

10.1016/j.cej.2021.133117

10.1016/j.jcis.2018.02.023

10.1155/2018/1273768

10.1021/ie301734f

10.1016/j.reactfunctpolym.2018.02.011

10.1016/j.synthmet.2015.01.031

10.1039/C8TA04218G

10.1002/adfm.201001054

10.1002/smll.201800582

10.1039/b511869g

10.1038/nmat3601

10.1021/jp074464w

Zhang L., 2020, ACS Appl. Mater. Interfaces, 3, 6845

10.1002/cjoc.201500595

10.1021/acsami.5b00657

10.1016/j.jallcom.2020.155420

10.1021/am504539k

10.1007/s12598-019-01349-5

Taberna P. L., 2003, J. Electrochem. Soc., 150

10.1016/j.carbon.2015.02.052