Controllability and Controller-Observer Design for a Class of Linear Time-Varying Systems

Paresh Date1, Bujar Gashi2
1The Centre for the Analysis of Risk and Optimisation Modelling Applications (CARISMA), Department of Mathematical Sciences, Brunel University, Uxbridge, UK
2Institute of Financial and Actuarial Mathematics (IFAM), Department of Mathematical Sciences, The University of Liverpool, Liverpool, UK

Tóm tắt

In this paper a class of linear time-varying control systems is considered. The time variation consists of a scalar time-varying coefficient multiplying the state matrix of an otherwise time-invariant system. Under very weak assumptions of this coefficient, we show that the controllability can be assessed by an algebraic rank condition, Kalman canonical decomposition is possible, and we give a method for designing a linear state-feedback controller and Luenberger observer.

Từ khóa


Tài liệu tham khảo

Athreya, K.B., Lahiri, S.N.: Measure Theory and Probability Theory. Springer (2006)

Chai, W., Loh, N.K.: Design of minimal-order state observers for time-varying multivariable systems. I. J. Syst. Sci. 23(4), 581–592 (1992)

Chang, A.: An algebraic characterization of controllability. IEEE Trans. Automat. Contr. 10, 112–113 (1965)

Chen, M.-S., Yen, J.-Y.: Application of the least squares algorithm to the observer design for linear time-varying systems. IEEE Trans. Automat. Contr. 44(9), 1742–1745 (1999)

D’Azzo, J.J., Houpis, C.H.: Linear Control System Analysis and Design: Conventional and Modern, 3rd edn. McGraw-Hill book Company (1988)

Gilbert, E.G.: Controllablity and observability in multivariable control systems. SIAM J. Control Ser. A, 1(2), 128–151 (1963)

Kalman, R.E.: Contributions to the theory of optimal control. Boletin-Sociedad Matematica Mexicana, pp. 102–119 (1960)

Kalman, R.E.: Canonical structure of linear dynamical systems. Proc. Natl. Acad. Sci. USA 48, 596–600 (1962)

Kalman, R.E.: Mathmatical description of linear dynamical systems. SIAM J. Control Ser. A, 1(2), 152–192 (1963)

Lee, H.C., Choi, J.W.: Ackermann-like eigenvalue assignment formulae for linear time-varying systems. IEE Proc.-Contr. Theor. Appl. 152(4), 427–434 (2005)

Leiva, H., Zambrano, H.: Rank condition for the controllablity of linear time-varying system. Int. J. Control 72(10), 929–931 (1999)

Lovass-Nagy, V., Miller, R.J., Mukundan, R.: On the application of matrix generalized inverses to the design of observer for time-varying and time-invariant linear systems. IEEE Trans. Automat. Contr. 25(6), 1213–1218 (1980)

Malek-Zavarei, M.: The stability of linear time-varying systems. I. J. Control 27(5), 809–815 (1978)

Nguyen, C., Lee, T.N.: Design of a state estimator for a class of time-varying mutivariable systems. IEEE Trans. Automat. Contr. 30(2), 179–182 (1985)

Nguyen, C.C.: Canonical transformation for a class of time-varying multivariable systems. I. J. Control 43(4), 1061–1074 (1986)

Nguyen, C.C.: Arbitrary eigenvalue assignments for linear time-varying multivariable control systems. I. J. Control 45(3), 1051–1057 (1987)

Nguyen, C.C.: Design of reduced-order state estimators for linear time-varying multivariable systems. I. J. Control 46(6), 2113–2126 (1987)

Phat, V.N.: Global stabilization for linear continuous time-varying systems. Appl. Math. Comput. 175, 1730–1743 (2006)

Silverman, L.M., Meadows, H.E.: Controllability and observability in time-variable linear systems. SIAM J. Control 5, 64–73 (1967)

Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer (1998)

Stubberud, A.R.: A controllablity criterion for a class of linear systems. IEEE Trans. Appl. Industry 68, 411–413 (1964)

Tsui, C.C.: Function-observer design for a class of linear time-varying system. I. J. Control 44(1), 277–282 (1986)

Valášek, M., Olgac, N.: Efficient eigenvalue assignment for general linear MIMO systems. Automatica 31(11), 1605–1617 (1995)

Weiss, L., Kalman, R.E.: Contributions to linear system theory. Int. J. Eng. Sci. 3, 141–171 (1965)

Weiss, L.: On the sturucture theory of linear differential systems. SIAM J. Control 6(4), 659–680 (1968)

Weiss, L., Falb, P.L.: Doležal’s theorem, linear algebra with continuously parametrized elemnets, and time-varying systems. Math. Syst. Theory 3, 67–75 (1969)

Wonham, W.M.: On pole assignment in multi-input controllable linear systems. IEEE Trans. Automat. Contr. 12(6), 660–665 (1967)

Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall (1996)