Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes

Nature Immunology - Tập 7 Số 2 - Trang 173-178 - 2006
Nicole Frahm1, Photini Kiepiela2, Sharon Adams3, Caitlyn Linde1, Hannah S. Hewitt1, Kaori Sango1, Margaret E. Feeney1, Marylyn M. Addo1, Mathias Lichterfeld1, Matthew Lahaie1, Eunice Pae4, Alysse G. Wurcel5,1, Timothy Roach6, M. Anne St. John6, Marcus Altfeld1, Francesco M. Marincola3, Crystal Dea Moore7, S. Mallal7, Mary Carrington8, David Heckerman9, Todd M. Allen1, James I. Mullins10, Bette Korber11,12, Philip Goulder1,13, Bruce D. Walker14,1, Christian Brander1
1Massachusetts General Hospital and Division of AIDS, Partners AIDS Research Center, Harvard Medical School, Boston, USA
2University of KwaZulu Natal, Durban, South Africa
3Clinical Center, National Institutes of Health, Bethesda, USA
4Fenway Community Health Center, Boston, USA
5Lemuel Shattuck Hospital, Boston, USA
6Queen Elizabeth Hospital, Bridgetown, Barbados
7Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital and Murdoch University, Australia.
8Basic Research Program, Science Applications International Corporation-Frederick, Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, USA
9Microsoft Research, , Redmond, USA#TAB#
10University of Washington - Seattle, USA
11Los Alamos National Laboratory, Los Alamos
12Santa Fe Institute, Santa Fe, USA
13Oxford University, Oxford, UK
14Howard Hughes Medical Institute, Chevy Chase, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hanke, T. et al. Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J. Virol. 73, 7524–7532 (1999).

Hanke, T. & McMichael, A. Pre-clinical development of a multi-CTL epitope-based DNA prime MVA boost vaccine for AIDS. Immunol. Lett. 66, 177–181 (1999).

Wilson, C.C. et al. Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. J. Immunol. 171, 5611–5623 (2003).

Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

Feeney, M.E. et al. Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J. Virol. 78, 8927–8930 (2004).

Leslie, A.J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med. 10, 282–289 (2004).

Scherer, A. et al. Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proc. Natl. Acad. Sci. USA 101, 12266–12270 (2004).

Brander, C. & Walker, B.D. Gradual adaptation of HIV to human host populations: good or bad news? Nat. Med. 9, 1359–1362 (2003).

Goulder, P.J. & Watkins, D.I. HIV and SIV CTL escape: implications for vaccine design. Nat. Rev. Immunol. 4, 630–640 (2004).

Trachtenberg, E. et al. Advantage of rare HLA supertype in HIV disease progression. Nat. Med. 9, 928–935 (2003).

Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775 (2004).

Frahm, N. et al. Consistent cytotoxic-T-lymphocyte targeting of immunodominant regions in human immunodeficiency virus across multiple ethnicities. J. Virol. 78, 2187–2200 (2004).

Cao, K. et al. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum. Immunol. 62, 1009–1030 (2001).

Frahm, N., Goulder, P.J.R. & Brander, C. Broad HIV-1 specific CTL responses reveal extensive HLA class I binding promiscuity of HIV-derived, optimally defined CTL epitopes. in HIV Immunology and HIV/SIV Vaccine Databases 2003, Vol. 1 (eds. Korber, B.T. et al.) 3–24 (Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 2003).

Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

Frahm, N., Korber, B.T. & Brander, C. Optimal CTL epitope identification in HIV clade B and non-clade B infection. in HIV Immunology and HIV/SIV Vaccine Databases 2004 (eds. Korber, B.T. et al.) (Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, in the press).

Prilliman, K.R. et al. HLA-B15 peptide ligands are preferentially anchored at their C termini. J. Immunol. 162, 7277–7284 (1999).

O'Brien, S.J., Gao, X. & Carrington, M. HLA and AIDS: a cautionary tale. Trends Mol. Med. 7, 379–381 (2001).

Flores-Villanueva, P.O. et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc. Natl. Acad. Sci. USA 98, 5140–5145 (2001).

Trachtenberg, E.A. & Erlich, H.A. A review of the role of the human leukocyte antigen (HLA) system as a host immunogenic factor influencing HIV transmission and progression to AIDS. in HIV Molecular Immunology 2001 (eds. Korber, B.T.K. et al.) I-43–60 (Theoretical Biology and Biophysics Group, Los Alamos, New Mexico, 2001).

Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

Kelleher, A.D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

Leslie, A. et al. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J. Exp. Med. 201, 891–902 (2005).

Voeten, J.T. et al. Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J. Virol. 74, 6800–6807 (2000).

Kijak, G.H. et al. Lost in translation: implications of HIV-1 codon usage for immune escape and drug resistance. AIDS Rev. 6, 54–60 (2004).

Messaoudi, I., Guevara Patino, J.A., Dyall, R., LeMaoult, J. & Nikolich-Zugich, J. Direct link between MHC polymorphism, T cell avidity, and diversity in immune defense. Science 298, 1797–1800 (2002).

McMichael, A. & Klenerman, P. HIV/AIDS. HLA leaves its footprints on HIV. Science 296, 1410–1411 (2002).

Bunce, M. et al. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence- specific primers (PCR-SSP). Tissue Antigens 46, 355–367 (1995).

Goulder, P.J. et al. Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by Elispot and intracellular cytokine staining assays. J. Virol. 75, 1339–1347 (2001).

Korber, B. et al. (eds.). HIV Molecular Immunology Database 2001 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 2001).

Addo, M.M. et al. Comprehensive epitope analysis of HIV-1-specific T cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).