Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá rủi ro định tính và sự gia tăng toàn cầu của phương pháp Control Banding
Current Environmental Health Reports - Trang 1-7 - 2023
Tóm tắt
Control banding (CB) là một chiến lược đánh giá rủi ro đã được áp dụng trên toàn cầu cho nhiều loại nguy cơ nghề nghiệp khác nhau. Bài báo này mô tả cách thức áp dụng phương pháp này, các phát triển gần đây trong tài liệu CB, một ví dụ về cách nó được sử dụng cho một công trường lớn với sự đa dạng về ngành nghề, và tương lai của CB sẽ đi đâu. Trong vài năm qua, việc ứng dụng CB đã mở rộng đáng kể và đã làm tăng cường hiểu biết của các chuyên gia về an toàn, sức khỏe và vệ sinh nghề nghiệp (OSHH) về sự tiếp xúc nghề nghiệp với nhiều nguy cơ khác nhau. Các lĩnh vực hóa chất nơi làm việc, vật liệu nano, và các tác nhân truyền nhiễm qua không khí (ví dụ: COVID-19) đặc biệt đã ghi nhận sự gia tăng đáng kể trong việc phát triển các công cụ CB. Nỗ lực xác thực các công cụ CB mở rộng cũng đã tăng cường tính đáng tin cậy cho phương pháp thay thế này. CB là một chiến lược đơn giản nhằm đánh giá sự tiếp xúc nghề nghiệp và cung cấp các biện pháp kiểm soát và giải pháp tương ứng để giảm thiểu rủi ro nơi làm việc. CB có thể được sử dụng như một phương pháp đánh giá rủi ro chính hoặc phân lớp mà cả các chuyên gia OSHH và những người không chuyên có thể sử dụng để xác định các giải pháp giảm thiểu sự tiếp xúc liên quan đến công việc. Nhu cầu về chuyên môn về sức khỏe và an toàn sẽ tiếp tục gia tăng khi công nghệ phát triển, môi trường thay đổi, và các lực lượng kinh tế làm tăng độ phức tạp của các nguy cơ tại nơi làm việc, và CB sẽ tiếp tục là một công cụ hữu ích cho những người thực hiện đánh giá rủi ro.
Từ khóa
#Control Banding #đánh giá rủi ro #an toàn lao động #nguy cơ nghề nghiệp #sức khỏe và an toàn #các công cụ kiểm soátTài liệu tham khảo
Swuste P, Hale A, Pantry S. Solbase: A databank of solutions for occupational hazards and risks. Ann Occ Hyg. 2003;47:541–7. https://doi.org/10.1093/annhyg/meg056.
Balsat A, Graeve J, Mairiaux P. A structured strategy for assessing chemical risks, suitable for small and medium-sized enterprises. Ann Occup Hyg. 2003;47:549–56. https://doi.org/10.1093/annhyg/meg074.
Ostiguy C, Roberge B, Menard L, Endo CA. Best practices guide to synthetic nanoparticle risk management. In: IRRST. 2009. https://www.irsst.qc.ca/en/. Accessed 30 Aug 2023.
ISO/TS 12901–2:2014 Nanotechnologies — occupational risk management applied to engineered nanomaterials — part 2: use of the control banding approach. In: ISO. https://www.iso.org/standard/53375.html. Accessed 28 Aug 2023.
Engineered Nanomaterials: Feasibility of establishing exposure standards and using control banding in Australia. In: Safe Work Australia. https://www.safeworkaustralia.gov.au/system/files/documents/1702/engineered_nanomaterials_feasibility_establishing_exposure_standards_august_2010.pdf. Accessed 28 Aug 2023.
Lentz TJ, Seaton M, Rane P, Gilbert SJ, McKernan LT, Whittaker C. Technical report: The NIOSH occupational exposure banding process for chemical risk management, Publication No. 2019–132. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH). 2019. https://www.cdc.gov/niosh/docs/2019-132/pdfs/2019-132.pdf?id=10.26616/NIOSHPUB2019132. Accessed 30 Aug 2023. Valuable, validated, and novel tool that allows industrial hygienists to make informed, risk-based decisions for chemicals without OELs using GHS inputs from SDSs.
Zalk DM, West E, Nelson, DI. Control Banding: Background, Evaluation, and Application. In: Cohrssen B, editor. Patty’s industrial hygiene volume 2, 7th Edition. Wiley; 2021. p. 269–307. Comprehensive chapter documenting the history, development, and global implications of control banding.
Zalk DM, Nelson DI. History and evolution of control banding: a review. J Occup Environ Hyg. 2008;5:330–46. https://doi.org/10.1080/15459620801997916.
Brosseau LM, Rosen J, Harrison R. Selecting controls for minimizing SARS-CoV-2 aerosol transmission in workplaces and conserving respiratory protective equipment supplies. Ann Work Expo Health. 2021;65:53–62.
Guidance on Preparing Workplaces for COVID-19. In: OSHA. 2020. https://www.osha.gov/sites/default/files/publications/OSHA3990.pdf. Accessed 29 Aug 2023.
Naumann BD, Sargent EV, Starkman BS, Fraser WJ, Becker GT, Kirk GD. Performance-based exposure control limits for pharmaceutical active ingredients. Am Ind Hyg Assoc J. 1996;57(1):33–42.
Garrod ANI, Evans PG, Davy CW. Risk management measures for chemicals: the “COSHH essentials” approach. J Expo Sci Environ Epidemiol. 2007;17:S48–54.
Globally Harmonized System of Classification and Labelling of Chemicals (GHS). In: About the GHS. United Nations Economic Commission for Europe. https://unece.org/about-ghs. Accessed 29 Aug 2023.
Arnone M, Koppisch D, Smola T, Gabriel S, Verbist K, Visser R. Hazard banding in compliance with the new Globally Harmonised System (GHS) for use in control banding tools. Regul Toxicol Pharmacol. 2015;73:287–95.
European Chemicals Agency.General report 2018. Publications Office, LU. 2019.
MEASE – The metals’ EASE. In: Tools & guidance: MEASE. EBRC Services for the Chemical Industries. 2010. https://www.ebrc.de/tools/mease.php. Accessed 31 Aug 2023.
RiCoG – Rigorous containment guide for metals. In: Tools & guidance: RiCoG. EBRC Services for the Chemical Industries. 2012. https://www.ebrc.de/tools/ricog.php. Accessed 31 Aug 2023.
Getting started. In: COSHH e-tool. Health and Safety Executive. http://coshh-tool.hse.gov.uk/. Accessed 31 Aug 2023.
Technical report: occupational exposure sampling for engineered nanomaterials. In: DHHS (NIOSH) Publication Number 2022–153. NIOSH. 2022. https://www.cdc.gov/niosh/docs/2022-153/2022-153.pdf?id=10.26616/NIOSHPUB2022153. Accessed 29 Aug 2023.
Furxhi I. Health and environmental safety of nanomaterials: O data, where art thou? NanoImpact. 2020. https://doi.org/10.1016/j.impact.2021.100378.
Dunn KH, Eastlake AC, Story M, Kuempel ED. Control banding tools for engineered nanoparticles: what the practitioner needs to know. Ann Work Expo Health. 2018;62:362–388. https://doi.org/10.1093/annweh/wxy002. Investigated the similarities, differences, strengths, and weaknesses of eight different control banding tools for nanomaterials and tested them with a real-world application, giving the current ES&H practitioner an idea of what tool could benefit their hazard scenario the best.
Gao X, Zou H, Zhou Z, Yuan W, Quan C, Zhang M, Tang S. Qualitative and quantitative differences between common control banding tools for nanomaterials in workplaces. RSC Adv. 2019;59. https://doi.org/10.1039/C9RA06823F. Performed both qualitative and quantitative validation of eight different control banding tools for nanomaterials, scoring them based on weighted criteria to highlight differences in quality.
Zalk DM, Paik SY, Chase WD. A quantitative validation of the control banding nanotool. Ann Work Expo Health. 2019;63:898–917. https://doi.org/10.1093/annweh/wxz057. First validation study of a control banding tool for nanomaterials.
Stone V, Gottardo S, Bleeker EAJ, et al. A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today. 2020;35:100941. https://doi.org/10.1016/j.nantod.2020.100941. Novel control banding framework for nanomaterials that provides cradle-to-grave risk assessment.
Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. J Nanopart Res. 2017;19:171. https://doi.org/10.1007/s11051-017-3850-6.
The Role of the Industrial Hygienist in a Pandemic 2nd Edition. In: AIHA biosafety and environmental microbiology committee. AIHA. 2021. https://aiha-assets.sfo2.digitaloceanspaces.com/AIHA/resources/Role-of-the-Industrial-Hygienist-in-a-Pandemic-2nd-edition.pdf. Accessed 30 Aug 2023.
Zisook RE, Monnot A, Parker J, Gaffney S, Dotson S, Unice. Assessing and managing the risks of COVID-19 in the workplace: applying industrial hygiene (IH)/occupational and environmental health and safety (OEHS) frameworks. Toxicol Ind Health. 2020;36:607–618. https://doi.org/10.1177/0748233720967522.
Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008;52:419–28. https://doi.org/10.1093/annhyg/men041.
Bodman, SW. Secretarial policy statement on nanoscale safety. In: DOE P 456.1. U.S. Department of Energy. 2005. https://www.directives.doe.gov/directives-documents/400-series/0456.1-APolicy. Accessed 30 Aug 2023.
Progress toward safe nanotechnology in the workplace. In: NIOSH Nanotechnology Research Center. DHHS (NIOSH). 2007. https://www.cdc.gov/niosh/docs/2007-123/pdfs/2007-123.pdf?id=10.26616/NIOSHPUB2007123. Accessed 30 Aug 2023.
Zalk DM, Paik SY, Swuste P. Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res. 2009;11:1685–704. https://doi.org/10.1007/s11051-009-9678-y.
Zalk DM, Kamerzell R, Paik S, Kapp J, Harrington D, Swuste P. Risk level based management system: a control banding model for occupational health and safety risk management in a highly regulated environment. Ind Health. 2009;48:18–28. https://doi.org/10.2486/indhealth.48.18.
McCord TA, Legaspi MT, West EA, Yung PK, Larson DL, Paik SY, Zalk DM. quantitative validation of control bands using bayesian statistical analyses. Ann Work Expo Health. 2021;65:63–83. https://doi.org/10.1093/annweh/wxaa081.
Zalk DM. Risk communication. In: Cohrssen, B editor. Patty’s Industrial Hygiene Volume 1, 7th Edition. Wiley; 2021. p. 51–66. https://doi.org/10.1002/0471435139.hyg14
Correa-Baena J-P, Hippalgaonkar K, Van Duren J, Jaffer S, Chandrasekhar VR, Stevanovic V, Wadia C, Guha S, Buonassisi T. Accelerating materials development via automation, machine learning, and high-performance computing. Joule. 2018;2:1410–20. https://doi.org/10.1016/j.joule.2018.05.009.
Baker RE, Mahmud AS, Miller IF, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20:193–205. https://doi.org/10.1038/s41579-021-00639-z.
Lucchini RG, London L. Global occupational health: current challenges and the need for urgent action. Ann Glob Health. 2014;80:251–6. https://doi.org/10.1016/j.aogh.2014.09.006.
United Nations global compact: a safe and healthy working environment. https://unglobalcompact.org/take-action/safety-andhealth. Accessed 4 Sep 2023.