Contributions of trans-magmatic fluid in the formation of porphyry copper deposits: A case study from the Baoshan deposit, South China
Tài liệu tham khảo
Alonso, 2009, Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids, Contrib. Mineral. Petrol., 157, 541, 10.1007/s00410-008-0351-8
Ballard, 2002, Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile, Contrib. Mineral. Petrol., 144, 347, 10.1007/s00410-002-0402-5
Bao, 2014, Characteristics of sulfur isotope geochemistry of Baoshan cu-mo-pb-zn-ag polymetallic deposit, Hunan Province and its geological significance, Acta Mineral. Sin., 34, 261
Bea, 1996, Residence of REE, Y, th and U in granites and crustal protoliths; implications for the chemistry of crustal melts, J. Petrol., 37, 521, 10.1093/petrology/37.3.521
Belousova, 2002, Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type, J. Geochem. Explor., 76, 45, 10.1016/S0375-6742(02)00204-2
Blanks, 2020, Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust, Nat. Commun., 11, 4342, 10.1038/s41467-020-18157-6
Blevin, 1992, The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia, Earth Environ. Sci. Trans. R. Soc. Edinb., 83, 305
Blundy, 1994, Prediction of crystal-melt partition coefficients from elastic moduli, Nat. Geosci., 372, 452
Bolhar, 2008, Systematics of zircon crystallisation in the Cretaceous Separation Point Suite, New Zealand, using U/Pb isotopes, REE and Ti geothermometry, Contrib. Mineral. Petrol., 156, 133, 10.1007/s00410-007-0278-5
Boyce, 2010, Lunar apatite with terrestrial volatile abundances, Nature, 466, 10.1038/nature09274
Burnham, 1967, Hydrothermal fluids at the magmatic stage, 34
Burnham, 1979, Magmas and hydrothermal fluid
Candela, 1992, Controls on ore metal ratios in granite-related ore systems: an experimental and computational approach, Geol. Soc. Am. Spec. Pap., 83, 317
Cao, 2012, Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization, Resour. Geol., 62, 63, 10.1111/j.1751-3928.2011.00180.x
Charvet, 2013, The neoproterozoic-early paleozoic tectonic evolution of the South China block: an overview, J. Asian Earth Sci., 74, 198, 10.1016/j.jseaes.2013.02.015
Cherniak, 2003, Diffusion in zircon, Zircon, 53, 113, 10.1515/9781501509322-008
Chiaradia, 2009, Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene macuchi arc, Western cordillera, Ecuador), Chem. Geol., 265, 468, 10.1016/j.chemgeo.2009.05.014
Chiaradia, 2014, Copper enrichment in arc magmas controlled by overriding plate thickness, Nat. Geosci., 7, 43, 10.1038/ngeo2028
Chiaradia, 2012, Why large porphyry cu deposits like high Sr/Y magmas?, Sci. Rep., 2, 10.1038/srep00685
Chu, 2009, Apatite composition: tracing petrogenetic processes in transhimalayan granitoids, J. Petrol., 50, 1829, 10.1093/petrology/egp054
Claiborne, 2006, Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada, Mineral. Mag., 70, 517, 10.1180/0026461067050348
Cooke, 2005, Giant porphyry deposits: characteristics, distribution, and tectonic controls, Econ. Geol., 100, 801, 10.2113/gsecongeo.100.5.801
Cox, 2019, Chalcophile element processing beneath a continental arc stratovolcano, Earth Planet. Sci. Lett., 522, 1, 10.1016/j.epsl.2019.06.017
Dilek, 2014, Evolution of Archean crust and early life, Mod. Approaches Solid Earth Sci., 7, 10.1007/978-94-007-7615-9
Ding, 2017, The fate of sulfide during decompression melting of peridotite implications for sulfur inventory of the MORB-source depleted upper mantle, Earth Planet. Sci. Lett., 459, 183, 10.1016/j.epsl.2016.11.020
Ding, 2015, Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, shi-hang zone, China: implications for petrogenesis and metallogenesis, Ore Geol. Rev., 69, 104, 10.1016/j.oregeorev.2015.02.004
Doherty, 2014, Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850–950 degrees C, Chem. Geol., 384, 10.1016/j.chemgeo.2014.06.023
Drummond, 1990, A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archean to modern comparisons, J. Geophys. Res. Solid Earth, 95, 10.1029/JB095iB13p21503
Du, 2020, Early sulfide saturation is not detrimental to porphyry cu-au formation, Geology, 48, 519, 10.1130/G47169.1
Ferry, 2007, New thermodynamic models and revised calibrations for the ti-in-zircon and zr-in-rutile thermometers, Contrib. Mineral. Petrol., 154, 429, 10.1007/s00410-007-0201-0
Flynn, 1978, An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts, Geochim. Cosmochim. Acta, 42, 685, 10.1016/0016-7037(78)90087-X
Fournier, 1999, Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment, Econ. Geol. Bull. Soc. Econ. Geol., 94, 1193, 10.2113/gsecongeo.94.8.1193
Griffin, 2002, Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, Lithos, 61, 237, 10.1016/S0024-4937(02)00082-8
Grimes, 2015, “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon, Contrib. Mineral., 170, 1
Hamlyn, 1985, Precious metals in magnesian low-ti lavas: implications for metallogenesis and sulfur saturation in primary magmas, Geochim. Cosmochim. Acta, 49, 1797, 10.1016/0016-7037(85)90150-4
Hanchar, 2007, Rare earth element behavior in zircon-melt systems, Elements, 3, 37, 10.2113/gselements.3.1.37
Harlov, 2015, Apatite: a fingerprint for metasomatic processes, Elements, 11, 171, 10.2113/gselements.11.3.171
He, 2010, Petrogenesis and tectonic significance of a mesozoic granite-syenite-gabbro association from inland South China, Lithos, 119, 621, 10.1016/j.lithos.2010.08.016
Henley, 2015, Porphyry copper deposit formation by sub-volcanic Sulphur dioxide flux and chemisorption, Nat. Geosci., 8, 210, 10.1038/ngeo2367
Hinton, 1991, The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths, Geochim. Cosmochim. Acta, 55, 3287, 10.1016/0016-7037(91)90489-R
Holland, 1972, Granites, solutions, and base metal deposits, Econ. Geol., 67, 281, 10.2113/gsecongeo.67.3.281
Hoskin, 2003, The composition of zircon and igneous and metamorphic petrogenesis, Zircon, 53, 27, 10.1515/9781501509322-005
Huang, 2017, Formation of porphyry mo deposit in a deep fault zone, example from the dabaoshan porphyry mo deposit in northern Guangdong, South China, Ore Geol. Rev., 81, 940, 10.1016/j.oregeorev.2016.07.013
Ishihara, 2003, Origin of sulfur in some magmatic-hydrothermal ore deposits of South China, Bull. Geol. Surv. Jpn., 54, 161, 10.9795/bullgsj.54.161
Kay, 2001, Central andean ore deposits linked to evolving shallow subduction systems and thickening crust, GSA Today, 11, 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2
Keken, 2011, Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res. Solid Earth, 116
Kelley, 2010, Mantle melting as a function of water content beneath the Mariana arc, J. Petrol., 51, 1711, 10.1093/petrology/egq036
Keppler, 1996, Constraints from partitioning experiments on the composition of subduction-zone fluids, Nature, 380, 16320, 10.1038/380237a0
Konecke, 2017, Co-variability of S6+, S4+, and S2- in apatite as a function of oxidation state: implications for a new oxybarometer, Am. Mineral., 102, 548, 10.2138/am-2017-5907
Kong, 2018, Co-development of jurassic I-type and A-type granites in southern Hunan, South China: dual control by plate subduction and intraplate mantle upwelling, Chem. Erde-Geochem., 78, 500, 10.1016/j.chemer.2018.08.002
Labanieh, 2012, Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench, J. Petrol., 53, 2441, 10.1093/petrology/egs055
Lassiter, 2002, Chlorine-potassium variations in melt inclusions from Raivavae and rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust, Earth Planet. Sci. Lett., 202, 525, 10.1016/S0012-821X(02)00826-9
Lee, 2020, How to make porphyry copper deposits, Earth Planet. Sci. Lett., 529, 10.1016/j.epsl.2019.115868
Lee, 2012, Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 336, 64, 10.1126/science.1217313
Lee, 2017, Magmatic evolution of granodiorite intrusions at the El Salvador porphyry copper deposit, Chile, based on trace element composition and U/Pb age of zircons, Econ. Geol., 112, 245, 10.2113/econgeo.112.2.245
Li, 2017, Re-os and U-pb geochronology of the shazigou mo polymetallic ore field, Inner Mongolia: implications for permian-triassic mineralization at the northern margin of the North China craton, Ore Geol. Rev., 83, 287, 10.1016/j.oregeorev.2016.12.010
Li, 2018, Zircon indicators of fluid sources and ore genesis in a multi-stage hydrothermal system: the dongping au deposit in North China, Lithos, 314, 463, 10.1016/j.lithos.2018.06.025
Li, 2018, Geochemistry and U-pb geochronology of the wagone and hermyingyi A-type granites, southern Myanmar: implications for tectonic setting, magma evolution and sn-W mineralization, Ore Geol. Rev., 95, 575, 10.1016/j.oregeorev.2018.03.015
Li, 2019, Ore-forming material sources of the jurassic Cu–Pb–Zn mineralization in the qin-hang ore belt, South China: constraints from S-pb isotopes, Geochemistry, 79, 280, 10.1016/j.geoch.2018.12.008
Li, 2019, Geochronology and geochemistry of tuffaceous rocks from the banxi group: implications for neoproterozoic tectonic evolution of the southeastern Yangtze block, South China, J. Asian Earth Sci., 177, 152, 10.1016/j.jseaes.2019.03.022
Liu, 2010, Geochemical contrasts between early cretaceous ore-bearing and ore-barren high-mg adakites in Central-Eastern China: implications for petrogenesis and cu-au mineralization, Geochim. Cosmochim. Acta, 74, 7160, 10.1016/j.gca.2010.09.003
Liu, 2010, New chronology of the Ningyuan alkali basalt in southern Hunan, China: evidence from LA-ICP-MS zircon U-pb dating, Geol. Bull. China, 29, 833
Liu, 2012, Remelting of neoproterozoic relict volcanic arcs in the middle jurassic: implication for the formation of the Dexing porphyry copper deposit, southeastern China, Lithos, 150, 85, 10.1016/j.lithos.2012.05.018
Liu, 2020, Petrogenesis of late jurassic Pb–Zn mineralized high δ18O granodiorites in the western nanling range, South China, J. Asian Earth Sci., 192, 10.1016/j.jseaes.2020.104236
Loucks, 2014, Distinctive composition of copper-ore-forming arc magmas, Aust. J. Earth Sci., 61, 5, 10.1080/08120099.2013.865676
Ludwig, 2003
Luo, 2007, Metallogeny by trans-magmatic fluids—theoretical analysis and field evidence, Earth Sci. Front., 14, 165, 10.1016/S1872-5791(07)60025-6
Luo, 2008, Metallogenic systems on the transmagmatic fluid theory, Acta Petrol. Sin., 24, 2669
MacDonald, 2013, Apatite-supergroup minerals in UK palaeogene granites: composition and relationship to host-rock composition, Eur. J. Mineral., 25, 461, 10.1127/0935-1221/2013/0025-2291
Meng, 2021, Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga, Nat. Commun., 12, 2189, 10.1038/s41467-021-22349-z
Miles, 2014, Apatite: a new redox proxy for silicic magmas?, Geochim. Cosmochim. Acta, 132, 101, 10.1016/j.gca.2014.01.040
Miles, 2014, Apatite: a new redox proxy for silicic magmas?, Geochim. Cosmochim. Acta, 132, 101, 10.1016/j.gca.2014.01.040
Mungall, 2002, Roasting the mantle: slab melting and the genesis of major au and au-rich cu deposits, Geology, 30, 915, 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
Nagaseki, 2008, Experimental study of the behavior of copper and zinc in a boiling hydrothermal system, Geology, 36, 27, 10.1130/G24173A.1
Pan, 2016, Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China, Lithos, 254, 118, 10.1016/j.lithos.2016.03.010
Parman, 2011, Along-arc variations in the pre-eruptive H2O contents of Mariana arc magmas inferred from fractionation paths, J. Petrol., 52, 257, 10.1093/petrology/egq079
Pokrovski, 2008, The effect of sulfur on vapor-liquid fractionation of metals in hydrothermal systems, Earth Planet. Sci. Lett., 266, 345, 10.1016/j.epsl.2007.11.023
Pokrovski, 2009, A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling, Geochim. Cosmochim. Acta, 73, 5406, 10.1016/j.gca.2009.06.007
Rapp, 1995, Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling, J. Petrol., 36, 891, 10.1093/petrology/36.4.891
Ren, 2020, Flat-slab subduction and formation of "intraplate" porphyry deposits: Insights from the Jurassic high and low La/Yb ore-forming porphyries along the Qin-Hang belt, South China, Ore Geol. Rev., 123
Rezeau, 2020, The importance of H2O in arc magmas for the formation of porphyry cu deposits, Ore Geol. Rev., 126, 10.1016/j.oregeorev.2020.103744
Richards, 2011, High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water, Econ. Geol., 106, 1075, 10.2113/econgeo.106.7.1075
Richards, 2011, Magmatic to hydrothermal metal fluxes in convergent and collided margins, Ore Geol. Rev., 40, 1, 10.1016/j.oregeorev.2011.05.006
Richards, 2015, The oxidation state, and sulfur and cu contents of arc magmas: implications for metallogeny, Lithos, 233, 27, 10.1016/j.lithos.2014.12.011
Rodriguez, 2007, Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longav volcano (36.2 degrees S, Andean southern volcanic zone, Central Chile), J. Petrol., 48, 2033, 10.1093/petrology/egm049
Rohrlach, 2005, Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines, 2, 369
Sano, 2002, High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency, Chem. Geol., 184, 217, 10.1016/S0009-2541(01)00366-7
Seo, 2009, The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits, Earth Planet. Sci. Lett., 282, 323, 10.1016/j.epsl.2009.03.036
Sha, 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis, Geochim. Cosmochim. Acta, 63, 3861, 10.1016/S0016-7037(99)00210-0
Shinohara, 1995, Volatile transport in a convecting magma column: implications for porphyry mo mineralization, Geology, 23, 1091, 10.1130/0091-7613(1995)023<1091:VTIACM>2.3.CO;2
Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3
Sobolev, 1996, H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 137, 45, 10.1016/0012-821X(95)00203-O
Stroncik, 2004, Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes, Geology, 32, 945, 10.1130/G21027.1
Sun, 1989, Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes, in Magmatism in the ocean basins, Geol. Soc. Lond. Spec. Publ., 423, 13
Sun, 2007, Chlorine in submarine volcanic glasses from the eastern Manus basin, Geochim. Cosmochim. Acta, 71, 1542, 10.1016/j.gca.2006.12.003
Sun, 2013, The link between reduced porphyry copper deposits and oxidized magmas, Geochim. Cosmochim. Acta, 103, 263, 10.1016/j.gca.2012.10.054
Sun, 2015, Porphyry deposits and oxidized magmas, Ore Geol. Rev., 65, 97, 10.1016/j.oregeorev.2014.09.004
Sun, 2017, Volcanism, mineralization and metamorphism at the xitieshan pb-zn deposit, NW China: insights from zircon geochronology and geochemistry, Ore Geol. Rev., 88, 289, 10.1016/j.oregeorev.2017.05.010
Thomas, 2002, Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon, Geochim. Cosmochim. Acta, 66, 2887, 10.1016/S0016-7037(02)00881-5
Tiepolo, 2008, Petrology and U-pb zircon geochronology of amphibole-rich cumulates with sanukitic affinity from husky ridge (Northern Victoria land, Antarctica): insights into the role of amphibole in the petrogenesis of subduction-related magmas, J. Petrol., 49, 937, 10.1093/petrology/egn012
Trail, 2011, 480, 79
Trail, 2012, Ce and eu anomalies in zircon as proxies for the oxidation state of magmas, Geochim. Cosmochim. Acta, 97, 70, 10.1016/j.gca.2012.08.032
Turner, 2001, U, th and ra disequilibria, sr, nd and pb isotope and trace element variations in sunda arc lavas: predominance of a subducted sediment component, Contrib. Mineral. Petrol., 142, 43, 10.1007/s004100100271
Wallace, 2005, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res., 140, 217, 10.1016/j.jvolgeores.2004.07.023
Wang, 2003, Geochemistry of early mesozoic potassium-rich diorites-granodiorites in southeastern Hunan Province, South China: petrogenesis and tectonic implications, Geochem. J., 37, 427, 10.2343/geochemj.37.427
Wang, 2003, Geochemistry of mesozoic mafic rocks adjacent to the Chenzhou-linwu fault, South China: implications for the lithospheric boundary between the Yangtze and cathaysia blocks, Int. Geol. Rev., 45, 263, 10.2747/0020-6814.45.3.263
Wang, 2013, Contrasting zircon hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in Central-Eastern China: implications for genetic relation to cu-au mineralization, Lithos, 156, 97, 10.1016/j.lithos.2012.10.017
Wang, 2013, Phanerozoic tectonics of the South China block: key observations and controversies, Gondwana Res., 23, 1273, 10.1016/j.gr.2012.02.019
Wang, 2014, Increasing magmatic oxidation state from paleocene to miocene in the eastern Gangdese Belt, Tibet: implication for collision-related porphyry cu-mo +/- au mineralization, Econ. Geol., 109, 1943, 10.2113/econgeo.109.7.1943
Watson, 2006, Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol., 151, 413, 10.1007/s00410-006-0068-5
Webster, 1990, Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt, Contrib. Mineral. Petrol., 104, 424, 10.1007/BF01575620
Webster, 2009, Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa, Geochim. Cosmochim. Acta, 73, 559, 10.1016/j.gca.2008.10.034
Wilkinson, 2013, Triggers for the formation of porphyry ore deposits in magmatic arcs, Nat. Geosci., 6, 917, 10.1038/ngeo1940
Wu, 2007, Lu-hf isotopic systematics and their applications in petrology, Acta Petrol. Sin., 23, 185
Xie, 2013, Origin of granodiorite porphyry and mafic microgranular enclave in the Baoshan pb-zn polymetallic deposit, southern Hunan Province: zircon U-pb chronological, geochemical and sr-nd-hf isotopic constraints, Acta Petrol. Sin., 29, 4186
Xie, 2015, S, pb, C and O isotopic characteristics and sources of metallogenic materials of Baoshan Pb–Zn deposit, southern Hunan Province, Mineral Deposits, 34, 333
Xie, 2018, The different sources and petrogenesis of jurassic intrusive rocks in the southern Lhasa subterrane, Tibet: evidence from the trace element compositions of zircon, apatite, and titanite, Lithos, 314–315, 447, 10.1016/j.lithos.2018.06.024
Yang, 2014, The role of external fluid in the shanggusi dynamic granitic magma system, east qinling, China: quantitative integration of textural and chemical data, Lithos, 208–209, 339, 10.1016/j.lithos.2014.09.023
Yang, 2016, Petrogenesis of the mesozoic shuikoushan peraluminous I-type granodioritic intrusion in Hunan Province, South China: Middle–lower crustal reworking in an extensional tectonic setting, J. Asian Earth Sci., 123, 224, 10.1016/j.jseaes.2016.04.008
Zafar, 2020, A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and East China: new insights from apatite geochemistry, J. Geodyn., 136, 10.1016/j.jog.2020.101723
Zajacz, 2009, Copper transport by high temperature, sulfur-rich magmatic vapor: evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile), Earth Planet. Sci. Lett., 282, 115, 10.1016/j.epsl.2009.03.006
Zhang, 2012, Tracing the evolution and distribution of F and cl in plutonic systems from volatile-bearing minerals: a case study from the liujiawa pluton (Dabie orogen, China), Contrib. Mineral. Petrol., 164, 859, 10.1007/s00410-012-0778-9
Zhang, 2017, Oxygen fugacity and porphyry mineralization: a zircon perspective of Dexing porphyry Cu deposit, China, Geochim. Cosmochim. Acta, 206, 343, 10.1016/j.gca.2017.03.013
Zheng, 2016, Continental versus oceanic subduction zones, Natl. Sci. Rev., 3, 495, 10.1093/nsr/nww049
Zheng, 2007, Contrasting zircon hf and O isotopes in the two episodes of neoproterozoic granitoids in South China: implications for growth and reworking of continental crust, Lithos, 96, 127, 10.1016/j.lithos.2006.10.003
Zhou, 2006, Petrogenesis of mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution, Episodes, 29, 26, 10.18814/epiiugs/2006/v29i1/004
Zhou, 2012, Origin of the Dexing cu-bearing porphyries, SE China: elemental and Sr–Nd–Pb–Hf isotopic constraints, Int. Geol. Rev., 54, 572, 10.1080/00206814.2010.548119