Contribution of canonical feed-forward loop motifs on the fault-tolerance and information transport efficiency of transcriptional regulatory networks
Tài liệu tham khảo
Kitano, 2004, Biological robustness, Nat. Rev. Genet., 826, 10.1038/nrg1471
Kitano, 2007, Towards a theory of biological robustness, Mol. Syst. Biol., 3
Akyildiz, 2004, Wireless sensor and actor networks: research challenges, Ad Hoc Networks, 2, 351, 10.1016/j.adhoc.2004.04.003
Genio, 2011, All scale-free networks are sparse, Phys. Rev. Lett., 107
Clauset, 2009, Power-law distributions in empirical data, SIAM Rev., 51, 661, 10.1137/070710111
Albert, 2000, Error and attack tolerance of complex networks, Nature, 406, 378, 10.1038/35019019
Cohen, 2000, Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85, 4626, 10.1103/PhysRevLett.85.4626
Cohen, 2001, Breakdown of the Internet under intentional attack, Phys. Rev. Lett., 86, 3682, 10.1103/PhysRevLett.86.3682
Erdös, 1960, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5
Watts, 1998, Collective dynamics of ‘small-world’ networks, Nature, 393, 440, 10.1038/30918
Magnan, 2003, Structure and function of the feed-forward loop network motif, Proc. Natl. Acad. Sci. USA
Rip, 2010, An experimental test of a fundamental food web motif, Proc. Biol. Sci., 10.1098/rspb.2009.2191
Milo, 2002, Network motifs: Simple building blocks of complex networks, Science, 298, 824, 10.1126/science.298.5594.824
Faith, 2007, Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles, PLoS Biol., 5, e8, 10.1371/journal.pbio.0050008
Margolin, 2006, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC Bioinformatics, 7, S7, 10.1186/1471-2105-7-S1-S7
Shmulevich, 2010
Feng, 2007
Prill, 2005, Dynamic properties of network motifs contribute to biological network organization, PLoS Biol., 10.1371/journal.pbio.0030343
Shen-Orr, 2002, Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genet., 31, 1061, 10.1038/ng881
T. Feyessa, M. Bikdash, Measuring nodal contribution to global network robustness, in: Southeastcon, 2011 Proceedings of IEEE, March 2011, pp. 131–135.
Crucittia, 2004, Error and attack tolerance of complex networks, Physica A, 340, 388, 10.1016/j.physa.2004.04.031
Latora, 2001, Efficient behavior of small-world networks, Phys. Rev. Lett., 87, 198701, 10.1103/PhysRevLett.87.198701
J. Efstathiou, A.K. Ng, Structural robustness of complex networks, in: Proceedings of International Workshop and Conference on Network Science, NetSci 2006, May 2006.
Agoston, 2005, Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example, Phys. Rev. E
Kim, 2008, Coupled feedback loops form dynamic motifs of cellular networks, Biophys. J., 94, 359, 10.1529/biophysj.107.105106
Y.Keun Kwon, K.Hyun Cho, Boolean dynamics of biological networks with multiple coupled feedback loops, 2007.
Isalan, 2008, Evolvability and hierarchy in rewired bacterial gene networks, Nature, 452, 840, 10.1038/nature06847
Kamapantula, 2014, Leveraging the robustness of genetic networks: a case study on bio-inspired wireless sensor network topologies, J. Ambient Intell. Humaniz. Comput., 5, 323, 10.1007/s12652-013-0180-0
B. Kamapantula, A. Abdelzaher, P. Ghosh, M. Mayo, E. Perkins, S. Das, Performance of wireless sensor topologies inspired by e. coli genetic networks, in: PerCom Workshops, 2012, pp. 302–307.
P. Ghosh, M. Mayo, V. Chaitankar, T. Habib, E. Perkins, S. Das, Principles of genomic robustness inspire fault-tolerant WSN topologies: A network science based case study, in: PerCom Workshops, 2011, pp. 160–165.
Abdelzaher, 2012, Empirical prediction of packet transmission efficiency in bio-inspired wireless sensor networks, 705
B. Kamapantula, A. Abdelzaher, M. Mayo, E. Perkins, S. Das, P. Ghosh, Quantifying robustness in biological networks using ns-2, Springer-Nanocom, 2014.
Barabasi, 1999, Emergence of scaling in random networks, Science, 286, 509, 10.1126/science.286.5439.509
Ghosh, 2005, GaMa: An evolutionary algorithmic approach for the design of mesh-based radio access networks, 374
Mayo, 2012, Motif participation by genes in e. coli transcriptional networks, Front. Physiol., 3, 357, 10.3389/fphys.2012.00357
Krapivsky, 2000, Connectivity of growing random networks, Phys. Rev. Lett., 85, 4629, 10.1103/PhysRevLett.85.4629
Vazquez, 2004, The topological relationship between the large-scale attributes and local interaction patterns of complex networks, Proc. Natl. Acad. Sci. USA, 101, 10.1073/pnas.0406024101
Schaffter, 2011, GeneNETWEAVER: in silico benchmark generation and performance profiling of network inference methods, Bioinformatics, 27, 2263, 10.1093/bioinformatics/btr373
A. Abdelzaher, M. Mayo, E.J. Perkins, P. Ghosh, Correlating in-silico feed-forward loop knockout experiments with the topological features of transcriptional regulatory networks, in: International Conference on Bio-Inspired Information and Communications Technologies, November 2014.
Newman, 2001, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118, 10.1103/PhysRevE.64.026118
Albert, 2002, Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47, 10.1103/RevModPhys.74.47
Newman, 2005, A measure of betweenness centrality based on random walks, Social Networks, 10.1016/j.socnet.2004.11.009
Wuchty, 2003, Centers of complex networks, J. Theor. Biol., 7, 45, 10.1016/S0022-5193(03)00071-7
Goh, 2005, Graph theoretic analysis of protein interaction networks of eukaryotes, Physica A, 357, 501, 10.1016/j.physa.2005.03.044
Ravasz, 2002, Hierarchical organization of modularity in metabolic networks, Science, 297, 1551, 10.1126/science.1073374
MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2010.