10.1109/TPAMI.2003.1195991
10.1109/tpami.2022.3148707
10.1109/CVPR46437.2021.01179
10.1109/CVPR46437.2021.00070
10.1109/CVPR42600.2020.00280
10.1007/978-3-030-58520-4_22
10.1609/aaai.v33i01.33019332
10.1109/TNNLS.2019.2926481
10.1109/TCSVT.2016.2580399
10.1109/TNNLS.2020.3016321
10.1109/TNNLS.2020.2978756
10.1109/ICCV48922.2021.00420
10.1109/CVPR46437.2021.01317
10.1109/CVPR46437.2021.00765
10.1109/CVPR42600.2020.01457
10.1109/CVPR42600.2020.00837
10.1109/TNNLS.2020.3015897
10.1109/CVPR42600.2020.00317
10.1109/JSTSP.2020.2977507
10.1109/tnnls.2021.3083504
10.1109/JSTSP.2020.3037516
10.1007/s11263-019-01284-z
Liu, Unsupervised image-to-image translation networks, Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS), 700
10.1109/ICIP42928.2021.9506224
10.1007/978-3-030-58583-9_5
Yang, CondConv: Conditionally parameterized convolutions for efficient inference, Proc. Adv. Neural Inf. Process. Syst., 32, 1307
10.1109/CVPR46437.2021.00903
10.1109/TCSVT.2022.3142771
10.1007/978-3-030-01234-2_16
10.1109/TNNLS.2020.3041752
10.1109/CVPR46437.2021.01212
10.1109/CVPR42600.2020.00975