Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vai trò đối lập của phenol và pyrocatechol trong sự phân huỷ 4-chlorophenol trong một phản ứng quang xúc tác–sinh học
Tóm tắt
Sự kết hợp chặt chẽ giữa quang xúc tác và sinh phân huỷ (ICPB) cung cấp phương pháp điều trị vượt trội cho sự phân huỷ các hợp chất sinh học khó phân huỷ, chẳng hạn như chlorophenol. Các trung gian được tạo ra thông qua quang xúc tác có thể được sử dụng ngay lập tức bởi các màng sinh học bao bọc. Sự phân huỷ chlorophenol có thể lý thuyết được tăng tốc bằng một đồng cơ chất hoặc bị ảnh hưởng bởi sự cạnh tranh với các loài oxy hoạt động quang xúc tác (ROS); tuy nhiên, số lượng các nghiên cứu để xem xét so sánh này rất hạn chế. Các phenol không clo thường đồng tồn tại trong nước thải thực tế; do đó, chúng tôi đã đánh giá ảnh hưởng của phenol (khó bị quang oxi hoá) và pyrocatechol (dễ bị quang oxi hoá) lên sự phân huỷ 4-chlorophenol (4CP). Hiệu suất loại bỏ 4CP đạt 51%, và tăng lên 62% sau khi thêm phenol. Trong khi đó, hiệu suất khử clo của 4CP tăng từ 47 lên 63%; tương tự, tỷ lệ tế bào sống/chết tăng từ 49/51 lên 79/21. Tuy nhiên, việc thêm pyrocatechol dẫn đến giảm hiệu suất loại bỏ 4CP xuống còn 32% và giảm tỷ lệ tế bào sống/chết xuống còn 35/65. Những khác biệt trong kết quả được cho là do các donor electron bổ sung được cung cấp bởi các sản phẩm bị quang phân huỷ của phenol cho vi khuẩn, điều này làm tăng cường sự phân huỷ 4CP; trong khi đó, pyrocatechol cạnh tranh với 4CP cho ROS, do đó ức chế sự phân huỷ của nó. Cạnh tranh cho ROS và các đặc tính đồng cơ chất nên được xem xét trong việc xử lý nước thải phenolic thông qua ICPB.
Từ khóa
#quang xúc tác #sinh phân huỷ #chlorophenol #phenol #pyrocatechol #nước thải phenolicTài liệu tham khảo
Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact (13):31–48. https://doi.org/10.1186/1475-2859-13-31
Bai Q, Yang L, Li R, Chen B, Zhang L, Zhang Y, Rittmann BE (2015) Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors. Environ Sci Technol 49:11536–11542. https://doi.org/10.1021/acs.est.5b03293
Buitrón G, González A, López-Marín LM (1998) Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Sci Technol 37:371–378. https://doi.org/10.1016/S0273-1223(98)00133-4
Du YL, Xiong HF, Dong SS, Zhang J, Ma DM, Zhou DD (2016) Identifying the role of reactive oxygen species (ROSs) in Fusarium solani spores inactivation. AMB Express 6(1):81. https://doi.org/10.1186/s13568-016-0257-1
Enroth C, Neujahr H, Schneider G, Lindqvist Y (1998) The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis. Structure 6:605–617. https://doi.org/10.1016/S0969-2126(98)00062-8
Fan C, Lu A, Li Y, Wang C (2010) Pretreatment of actual high-strength phenolic wastewater by manganese oxide method. Chem Eng J 160:20–26. https://doi.org/10.1016/j.cej.2010.02.042
Frascari D, Bacca AEM, Zama F, Bertin L, Fava F, Pinelli D (2016) Olive mill wastewater valorisation through phenolic compounds adsorption in a continuous flow column. Chem Eng J 283:293–303. https://doi.org/10.1016/j.cej.2015.07.048
González G, Herrera G, Garcıa MT, Peña M (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresour Technol 80:137–142. https://doi.org/10.1016/S0960-8524(01)00076-1
Halak S, Basta T, Bürger S, Contzen M, Stolz A (2006) Characterization of the genes encoding the 3-carboxy-cis,cis-muconate-lactonizing enzymes from the 4-sulfocatechol degradative pathways of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. Microbiol-Sgm 152:3207–3216. https://doi.org/10.1099/mic.0.29136-0
Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46:797–807. https://doi.org/10.1016/S0045-6535(01)00182-5
Jiang J, Gao Y, Pang S-Y, Lu X-T, Zhou Y, Ma J, Wang Q (2015) Understanding the Role of Manganese Dioxide in the Oxidation of Phenolic Compounds by Aqueous Permanganate. Environ Sci Techol 49:520–528. https://doi.org/10.1021/es504796h
Jiang Y, Wen J, Lan L, Hu Z (2007) Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis. Biodegradation 18:719–729. https://doi.org/10.1007/s10532-007-9100-3
Kim JH, Oh KK, Lee ST, Kim SW, Hong SI (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem 37:1367–1373. https://doi.org/10.1016/S0032-9592(02)00007-9
Kim S, Hwang J, Chung J, Bae W (2014) Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates. J Hazard Mater 275:99. https://doi.org/10.1016/j.jhazmat.2014.04.052
Li BZ, Xu XY, Zhu L (2010) Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds. J Zhejiang Univ Sci B 11(3):177–189. https://doi.org/10.1631/jzus.B0900291
Li G, Park S, Kang D-W, Krajmalnik-Brown R, Rittmann BE (2011) 2,4,5-Trichlorophenol Degradation Using a Novel TiO2-Coated Biofilm Carrier: Roles of Adsorption, Photocatalysis, and Biodegradation. Environ Sci Technol 45:8359–8367. https://doi.org/10.1021/es2016523
Li G, Park S, Rittmann BE (2012) Developing an efficient TiO2-coated biofilm carrier for intimate coupling of photocatalysis and biodegradation. Water Res 46:6489–6496. https://doi.org/10.1016/j.watres.2012.09.029
Li X, Cubbage JW, Tetzlaff TA, Jenks WS (1999) Photocatalytic Degradation of 4-Chlorophenol. 1. The Hydroquinone Pathway. J Org Chem 64:8509–8524. https://doi.org/10.1021/jo990820y
Liu YJ, Zhang AN, Wang XC (2009) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem Eng J 44:187–192. https://doi.org/10.1016/j.bej.2008.12.001
Müller E, Schüssler W, Horn H, Lemmer H (2013) Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 92:969–978. https://doi.org/10.1016/j.chemosphere.2013.02.070
Marsolek MD, Kirisits MJ, Gray KA, Rittmann BE (2014) Coupled photocatalytic-biodegradation of 2,4,5-trichlorophenol: Effects of photolytic and photocatalytic effluent composition on bioreactor process performance, community diversity, and resistance and resilience to perturbation. Water Res 50:59–69. https://doi.org/10.1016/j.watres.2013.11.043
Marsolek MD, Kirisits MJ, Rittmann BE (2007) Biodegradation of 2,4,5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation. Biodegradation 18:351–358. https://doi.org/10.1007/s10532-006-9069-3
Marsolek MD, Rittmann BE (2016) Effect of substrate characteristics on microbial community structure, function, resistance, and resilience; application to coupled photocatalytic-biological treatment. Water Res 90:1–8. https://doi.org/10.1016/j.watres.2015.12.002
Marsolek MD, Torres CI, Hausner M, Rittmann BE (2008) Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnol Bioeng 101:83–92. https://doi.org/10.1002/bit.21889
Martins RC, Ferreira AM, Gando-Ferreira LM, Quinta-Ferreira RM (2015) Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes. Environ Sci Pollut R 22:15587–15597. https://doi.org/10.1007/s11356-015-4766-2
Monsalvo VM, Mohedano AF, Casas JA, Rodríguez JJ (2009) Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures. Bioresour Technol 100:4572–4578. https://doi.org/10.1016/j.biortech.2009.04.044
Salamanca D, Karande R, Schmid A, Dobslaw D (2015) Novel cyclohexane monooxygenase from Acidovorax sp. CHX100. Appl Microbio Biot 99:6889–6897. https://doi.org/10.1007/s00253-015-6599-9
Sarria V, Parra S, Adler N, Péringer P, Benitez N, Pulgarin C (2002) Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today 76:301–315. https://doi.org/10.1016/S0920-5861(02)00228-6
Smith MR (1991) The biodegradation of aromatic hydrocarbons by bacteria, Springer Netherlands
Solyanikova IP, Golovleva LA (2004) Bacterial Degradation of Chlorophenols: Pathways, Biochemica, and Genetic Aspects. J Environ Sci Heal B 39:333–351. https://doi.org/10.1081/PFC-120035921
Wang WJ, Zhang LZ, An TC, Li GY, Yip HY, Wong PK (2011) Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B–Ni-codoped TiO2, microspheres: the role of different reactive species. Appl Catal B-Enviro 108(1–2):108–116. https://doi.org/10.1016/j.apcatb.2011.08.015
Xiong HF, Zou DL, Zhou DD, Dong SS, Wang JW, Rittmann BE (2017) Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem Eng J 316:7–14. https://doi.org/10.1016/j.cej.2017.01.083
Xu XH, Zhou HY, Wang DH (2005) Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water. Chemosphere 58(11):1497–1502. https://doi.org/10.1016/j.chemosphere.2004.11.071
Zhang Y, Sun X, Chen L, Rittmann BE (2012) Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization. Biodegradation 23:189–198. https://doi.org/10.1007/s10532-011-9498-5
Zhang Y, Tay J (2015) Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules. J Hazard Mater 286:204–210. https://doi.org/10.1016/j.jhazmat.2015.01.003
Zhou D, Liu M, Wang J, Dong S, Cui N, Gao L (2013) Granulation of activated sludge in a continuous flow airlift reactor by strong drag force. Biotechnol Bioproc E 18:289–299. https://doi.org/10.1007/s12257-012-0513-4