Mô hình trái ngược trong các thuộc tính lá của các cộng đồng cây bụi Địa Trung Hải dọc theo gradient độ cao: các phép đo là quan trọng

Plant Ecology - Tập 220 - Trang 765-776 - 2019
Giandiego Campetella1, Stefano Chelli1, Camilla Wellstein2, Emmanuele Farris3, Giacomo Calvia4, Enrico Simonetti1, Lubov Borsukiewicz5, Sula Vanderplank6, Michela Marignani4
1School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Camerino, Italy
2Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen, Italy
3Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
4DISVA, University of Cagliari, Cagliari, Italy
5Lviv University Botanical Garden, Botanical Garden of Lviv, Lviv, Ukraine
6San Diego State University Research Foundation, San Diego, USA

Tóm tắt

Chúng tôi đã đánh giá những thay đổi trong giá trị trung bình trọng số theo cộng đồng (CWM) và sự biến động của diện tích lá cụ thể (SLA) và diện tích lá (LA) của các cộng đồng cây bụi Địa Trung Hải khác nhau dọc theo gradient độ cao trên đảo Sardinia (Ý). Hơn nữa, chúng tôi đã khám phá sự đóng góp tương đối của sự chuyển đổi loài và biến thể nội loài vào những thay đổi trong các giá trị CWM dọc theo gradient. Bốn mươi đơn vị lấy mẫu (5 × 5 m) đã được chọn một cách ngẫu nhiên dọc theo một gradient độ cao 1300 m mà đi qua bốn kiểu nhiệt (vành đai nhiệt độ). Các thuộc tính lá đã được đo ở mỗi đơn vị lấy mẫu. ANOVA và bài kiểm tra xu hướng cho sự thay đổi đơn điệu trong phương sai đã được sử dụng để đánh giá, tương ứng, sự khác biệt CWM và sự biến động ở cả hai thuộc tính lá qua các kiểu nhiệt. Phân tích phương sai của các giá trị CWM đã được sử dụng để xác định vai trò của sự biến động giữa loài và biến động trong loài. SLA và LA đã phản ứng khác nhau dọc theo gradient nghiên cứu về các giá trị trung bình trọng số theo độ phong phú và tính biến động: CWM của SLA cho thấy giá trị thấp nhất ở kiểu nhiệt khô nhất, trong khi LA ở kiểu nhiệt ẩm hơn; sự biến động SLA cho thấy xu hướng tăng trưởng đáng kể khi có sự tăng cường độ ẩm, trong khi sự biến động LA không cho thấy bất kỳ mô hình nào. Sự đóng góp của biến thể trong loài là đáng kể đối với cả hai thuộc tính lá, nhưng cao hơn cho SLA, nơi phát hiện được sự tương quan âm giữa sự biến động giữa loài và biến động trong loài. Chúng tôi nhấn mạnh tầm quan trọng của việc xem xét đồng thời các phép đo của cả hai thuộc tính lá để hiểu phản ứng chức năng của các cộng đồng trong môi trường Địa Trung Hải. Hơn nữa, việc bỏ qua sự biến động trong loài của các thuộc tính lá, ngay cả khi dọc theo các gradient dốc với những thay đổi về thành phần loài có liên quan, có thể dẫn đến việc đánh giá thấp lượng biến động thuộc tính phản ứng với những thay đổi môi trường.

Từ khóa


Tài liệu tham khảo

Ackerly DD (2004) Functional traits of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monit 74:25–44 Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457 Anacker B, Rajakaruna N, Ackerly D, Harrison H, Keeley J, Vasey M (2011) Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. Plant Ecol Divers 4:179–188 Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639 Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG et al (2018) An updated checklist of the vascular flora native to Italy. Plant Biosyst 152:179–303 Cañadas EM, Fenu G, Penas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. Biol Conserv 170:282–291 Canu S, Rosati L, Fiori M, Motroni A, Filigheddu R, Farris E (2015) Bioclimate map of Sardinia (Italy). J Maps 11:711–718 Chapin FS (1991) Integrated responses of plants to stress. Bioscience 41:29–36 Chelli S, Marignani M, Barni E et al (2019) Plant-environment interactions through a functional traits perspective: a review of italian studies. Plant Biosyst. https://doi.org/10.1080/11263504.2018.1559250. Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380 Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Mon 79:109–126 Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in Mediterranean climate regions. Trends Ecol Evol 11:362–366 Cuttelod A, García N, Malak DA, Temple HJ, Katariya V (2009) The Mediterranean: a biodiversity hotspot under threat. Wildlife in a Changing World–an analysis of the 2008 IUCN Red List of Threatened Species, 89. Derroire G, Powers JS, Hulshof CM, Varela LEC, Healey JR (2018) Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci Rep 8:285 Farris E, Secchi Z, Filigheddu R (2007) Phytosociological study of the shrub and pre-forest communities of the effusive substrata of NW Sardinia. Fitosociologia 44:55–81 Farris E, Filibeck G, Marignani M, Rosati L (2010) The power of potential natural vegetation (and of spatial-temporal scale): a response to Carrión & Fernández (2009). J Biogeogr 37:2211–2213 Fenu G, Fois M, Cañadas EM, Bacchetta G (2014) Using endemic-plant distribution, geology and geomorphology in biogeography: the case of Sardinia (Mediterranean Basin). Syst Biodivers 12:181–193 Fisher RA (1934) Statistical methods for research workers, 5th edn. Oliver and Boyd, Edinburgh Fraser LH, Greenall A, Carlyle C, Turkington R, Friedman CR (2009) Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Ann Bot-London 103:769–775 Galié M, Gasparri R, Perta RM, Biondi E, Biscotti N, Pesaresi S, Casavecchi S (2015) Post-fire regeneration of Calicotome villosa (Poiret) Link and vegetation analysis. Plant Sociology 52(2):101–120 Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M et al (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecol 85:2630–2637 Garnier E, Navas ML, Grigulis K (2016) Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press, Oxford Garnier et al (2018) Inter- and intra-specific trait shifts among sites differing in drought conditions at the north western edge of the Mediterranean Region. Flora. https://doi.org/10.1016/j.flora.2018.07.009 Gastwirth JL, Gel YR, Wallace Hui WL, Lyubchich V, Miao W, Noguchi K (2015) Package ‘lawstat’. Available at: https://cran.r-project.org/web/packages/lawstat/lawstat.pdf. Accessed Mar 2018 Givnish TJ (1984) Leaf and canopy adaptations in tropical forests. In Physiological ecology of plants of the wet tropics. Springer, Dordrecht, pp 51–84 Gross N, Börger L, Soriano-Morales SI, Le Bagousse-Pinguet Y, Quero JL, García-Gómez M et al (2013) Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. J Ecol 101:637–649 Hoffmann WA, Franco AC, Moreira MZ, Haridasan M (2005) Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct Ecol 19:932–940 ISAC-CNR (2009) Clima, cambiamenti climatici globali e loro impatto sul territorio nazionale. Quaderni dell’ISAC, Vol 1. ISAC-CNR, Bologna Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. J Ecol 98:1134–1140 Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27:1254–1261 Le Bagousse-Pinguet Y, Börger L, Quero JL, García-Gómez M, Soriano S, Maestre FT, Gross N (2015) Traits of neighbouring plants and space limitation determine intraspecific trait variability in semi-arid shrublands. J Ecol 103:1647–1657 Le Bagousse-Pinguet Y, Gross N, Maestre FT, Maire V, De Bello F, Fonseca CR, Kattge J, Valencia E, Leps J, Liancourt P (2017) Testing the environmental filtering concept in global drylands. J Ecol 105:1058–1069 Lepš J, de Bello F, Šmilauer P, Doležal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects. Ecography 34:856–863 Liancourt P, Boldgiv B, Song DS, Spence LA, Helliker BR, Petraitis PS, Casper BB (2015) Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe. Glob Change Biol 21:3489–3498 Mansion G, Rosenbaum G, Schoenenberger J, Bacchetta G, Rossell OJ, Conti E (2008) Phylogenetic analysis informed by geological history supports multiple, sequential invasions of the Mediterranean basin by the Angiosperm family Araceae. Syst Biol 57:269–285 Marks CO, Lechowicz MJ (2006) Alternative designs and the evolution of functional diversity. Am Nat 167:55–67 Medail F, Quezel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13:1510–1513 Milla R, Rich PB, Niinemets Ü, Castro-Díez P (2008) Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Funct Ecol 22:565–576 Mitchell RM, Bakker JD (2014) Intraspecific trait variation driven by plasticity and ontogeny in Hypochaeris radicata. PLoS ONE 9(10):e109870 Mooney HA, Dunn EL (1970) Convergent evolution of Mediterranean-climate evergreen sclerophyllous shrubs. Evolution 24:292–303 Moreno J, Oechel WC (Eds.) (2012) Global change and Mediterranean-type ecosystems, vol 117. Springer, New York Mudholkar GS, McDermott MP, Aumont J (1993) Testing homogeneity of ordered variances. Metrika 40:271–281 Naveh Z, Whittaker RH (1979) Structural and floristic diversity of shrublands and woodlands in northern Israel and other Mediterranean areas. Vegetatio 4:171–190 Neuhauser M, Hothorn LA (2000) Location-scale and scale trend tests based on Levene's transformation. Comput Stat Data An 33:189–200 Noguchi K, Gel YR (2010) Combination of Levene-type tests and a finiteintersection method for testing equality of variances against ordered alternatives. J Nonparametr Stat 22:897–913 Ordonez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149 Peres-Neto PR, Dray S, ter Braak CJF (2017) Linking trait variation to the environment: critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography 40:806–816 Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Au J Bot 61:167–234 Petruzzellis F, Palandrani C, Savi T, Alberti R, Nardini A, Bacaro G (2017) Sampling intraspecific variability in leaf functional traits: practical suggestions to maximize collected information. Ecol Evol 7(24):11236–11245. https://doi.org/10.1002/ece3.3617 Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol 182:565–588 R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed Mar 2018 Reich PB (2014) The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J Ecol 102:275–301 Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164:143–164 Rivas-Martìnez S, Rivas-Sàenz S, Penas-Merino A (2011) Worldwide bioclimatic classification system. Glob Geobot 1:1–638 Rozendaal DMA, Hurtado VH, Poorter L (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct Ecol 20:207–216 Scherrer D, Massy S, Meier S, Vittoz P, Guisan A (2017) Assessing and predicting shifts in mountain forest composition across 25 years of climate change. Divers Distrib 23:517–528 Senatore A, Mendicino G, Smiatek G, Kunstmann H (2011) Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. J Hydrol 399:70–92 Shield LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447 Shipley B, De Bello F, Cornelissen JHC, Laliberté E, Laughlin DC, Reich PB (2016) Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180:923–931 Shoshany M, Karnibad L (2011) Mapping shrubland biomass along Mediterranean climatic gradients: the synergy of rainfall-based and NDVI-based models. Int J Rem Sens 32:9497–9508 Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A et al (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419 Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T (2004) Relating plant traits and species distributions along bioclimatic gradients for 88 leucadendron taxa. Ecology 85:1688–1699 Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS USA 102:8245–8250 Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson JG (2002) Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol 154:147–157 Wellstein C, Chelli S, Campetella G, Bartha S, Galiè M, Spada F, Canullo R (2013) Intraspecific phenotypic variability of plant functional traits in contrasting mountain grassland habitats. Biodiv Conserv 22:2353–2374 Wellstein C, Campetella G, Spada F, Chelli S, Mucina L, Canullo R, Bartha S (2014) Context-dependent assembly rules and the role of dominating grasses in semi-natural abandoned sub-Mediterranean grasslands. Agr Ecosyst Environ 182:113–122 Wellstein C, Poschlod P, Gohlke A, Chelli S, Campetella G, Rosbakh S, Canullo R, Kreyling J, Jentsch A, Beierkuhnlein C (2017) Effects of extreme drought on specific leaf area of grassland species: a meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Glob Change Biol 23:2473–2481 West AG, Dawson TE, February EC, Midgley GF, Bond WJ, Aston TL (2012) Diverse functional responses to drought in a Mediterranean- type shrubland in South Africa. New Phytol 195:396–407 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159 Wilson PJ, Thompson KEN, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162 Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of highand low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434 Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient poor habitats has different consequences for leaf life span. J Ecol 90:534–543 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827 Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S et al (2017) Global climatic drivers of leaf size. Science 357:917–921 Zelený D (2018) Which results of the standard test for community-weighted mean approach are too optimistic? J Veg Sci 1:1. https://doi.org/10.1111/jvs.12688