Contrasting leaf cuticular wax composition of Conchocarpus and Dryades species (Rutaceae) from the Atlantic Forest and “Restinga”
Tóm tắt
Conchocarpus is the largest genus in the subtribe Galipeinae, tribe Galipeeae, distributed from Nicaragua to northern Bolivia and southern Brazil, with the center of species diversity in the Brazilian Atlantic Rainforest. Five species were recently segregated to a new genus (Dryades), thereby restoring the monophyly of Conchocarpus sensu stricto. In addition to the wide morphological diversity of Conchocarpus species, to date, few chemical aspects have been explored, mainly in regard to wax composition. This study aims to compare the chemical composition of the cuticular wax of selected species of Conchocarpus sensu stricto and Dryades, in order to determine their similarities and/or differences, as well as discuss possible correlations with habitats, and potential taxonomic implications. The main results showed that in general, Conchocarpus and Dryades could be distinguished, with species of the former genus exhibiting longer-chain alkanes and those of the latter higher triterpene diversity. Moreover, species inhabiting the Atlantic Rainforest have a thinner wax load, reduced amounts of triterpenes and are rich in alkanes, while those from “Restinga” vegetation exhibit a higher wax content, fewer alkanes, and large amounts of triterpenes.
Tài liệu tham khảo
Ambrozin ARP, Vieira PC, Fernandes JB, Silva MFDGFD, Albuquerque SD (2008) Piranoflavonas inéditas e atividades tripanocidas das substâncias isoladas de Conchocarpus heterophyllus. Quím Nova 31:740–743. https://doi.org/10.1590/S0100-40422008000400005
Barnes JD, Cardoso-Vilhena J (1996) Interactions between electromagnetic radiation and the plant cuticle. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. BIOS Scientific Publishers, Oxford, pp 157–174
Becker R, Szakiel A (2019) Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J Herb Med 16: 100237 https://doi.org/10.1016/j.hermed.2018.10.002
Bellete BS, Sá ICG, Mafezoli J, Cerqueira CN, Silva MFGF, Fernandes JB, Vieira PC, Zukerman-Schpector J, Pirani JR (2012) Fitoquímica e quimiossistemática de Conchocarpus marginatus e C. inopinatus (Rutaceae). Quím Nova 35:2132–2138. https://doi.org/10.1590/S0100-40422012001100006
Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129. https://doi.org/10.1016/j.plipres.2012.10.002
Bruniera CP, Kallunki JA, Groppo M (2015) Almeidea A.St.-Hil. belongs to Conchocarpus J.C.Mikan (Galipeinae, Rutaceae): evidence from morphological and molecular data, with a first analysis of subtribe Galipeinae. PLoS One 10: e0125650 https://doi.org/10.1371/journal.pone.0125650
Cabral RS, Sartori MC, Cordeiro I, Queiroga CL, Eberlin MN, Lago JHG, Moreno PRH, Young MCM (2012) Anticholinesterase activity evaluation of alkaloids and coumarin from stems of Conchocarpus fontanesianus. Rev Bras Farmacogn 22:374–380. https://doi.org/10.1590/S0102-695X2011005000219
Chu W, Gao H, Cao S, Fang X, Chen H, Xiao S (2017) Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chem 219:436–442. https://doi.org/10.1016/j.foodchem.2016.09.186
Cerda-Peña C, Contreras S, Rau JR (2020) Molecular n-alkyl leaf waxes of three dominant plants from the temperate forest in South America. Org Geochem 149:104105. https://doi.org/10.1016/j.orggeochem.2020.104105
Colli-Silva M, Pirani JR (2019) Biogeographic patterns of Galipeinae (Galipeeae, Rutaceae) in Brazil: species richness and endemism at different latitudes of the Atlantic Forest “hotspot.” Flora 251:77–87. https://doi.org/10.1016/j.flora.2019.01.001
Cooper M, Boschi RS, Silva LFSD, Toma RS, Vidal-Torrado P (2017) Hydro-physical characterization of soils under the Restinga Forest. Sci Agric 74:393–400. https://doi.org/10.1590/1678-992X-2016-0103
Cortez LER, Cortez DAG, Fernandes JB, Vieira PC, Ferreira AG, Silva MFGF (2009) New alkaloids from Conchocarpus gaudichaudianus. Heterocyles 78:1–7
Dodd RS, Poveda MM (2003) Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol 31:1257–1270. https://doi.org/10.1016/S0305-1978(03)00031-0
Eglinton G, Hamilton RJ, Raphael RA, Gonzalez AG (1962) Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1:89–102. https://doi.org/10.1016/S0031-9422(00)88006-1
Epifano F, Fiorito S, Genovese S, Granica S, Vitalini S, Zidorn C (2015) Phytochemistry of the genus Skimmia (Rutaceae). Phytochemistry 115:27–43. https://doi.org/10.1016/j.phytochem.2015.02.014
Fernandes AMS, Baker EA, Martin JT (1964) Studies on plant cuticle. VI. The isolation and fractionation of cuticular waxes. Ann Appl Biol 53:43–58. https://doi.org/10.1111/j.1744-7348.1964.tb03779.x
Flexor JM, Martin L, Suguio K, Dominguez JML (1984) Gênese dos cordões litorâneos da parte central da costa brasileira. In: Lacerda LD, Araújo DSD, Cerqueira R, Turcq B (eds) Restingas: origem, estruturas, processos. CEUFF, Niterói, pp 35–46
Groppo M, Pirani JR, Blanco SR, Salatino MLF, Kallunki JA (2008) Phylogeny of Rutaceae based on two non-coding regions from cpDNA. Am J Bot 95:985–1005. https://doi.org/10.3732/ajb.2007313
Groppo M, Lemos LJC, Ferreira PL, Ferreira C, Bruniera CP, Castro NM, Pirani JR, El Ottra JHL, Kallunki JA (2021) A tree nymph of the Brazilian Atlantic Forest: Dryades (Galipeinae, Rutaceae), a new neotropical genus segregated from Conchocarpus. Mol Phylogenet Evol 154:106971. https://doi.org/10.1016/j.ympev.2020.106971
Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the Plant Cuticle. Blackwell, Oxford, pp 145–181
Jovanović SČ, Zlatković BK, Stojanović GS (2015) Distribution and variability of n-alkanes in epicuticular waxes of Sedum species from the Central Balkan peninsula: chemotaxonomic importance. Chem Biodivers 12:767–780. https://doi.org/10.1002/cbdv.201400251
Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178. https://doi.org/10.1016/j.pmatsci.2008.07.003
Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80. https://doi.org/10.1016/S0163-7827(02)00045-0
Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol 227:698–713. https://doi.org/10.1111/nph.16571
Li J, Huang J, Ge J, Huang X, Xie S (2013) Chemotaxonomic significance of n-alkane distributions from leaf wax in genus of Sinojackia species (Styracaceae). Biochem Syst Ecol 49:30–36. https://doi.org/10.1016/j.bse.2013.02.001
Mafezoli J, Vieira PC, Fernandes JB, da Silva MFGF, de Albuquerque S (2000) In vitro activity of Rutaceae species against the trypomastigote form of Trypanosoma cruzi. J Ethnopharmacol 73:335–340. https://doi.org/10.1016/S0378-8741(00)00315-9
Mamrutha HM, Mogili T, Jhansi Lakshmi K, Rama N, Kosma D, Udaya Kumar M, Jenks MA, Karaba N (2010) Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiol Biochem 48:690–696. https://doi.org/10.1016/j.plaphy.2010.04.007
Mantovani A, Iglesias RR (2008) Factors limiting seed germination of terrestrial bromeliads in the sandy coastal plains (restinga) of Maricá, Rio de Janeiro, Brazil. Rodriguésia 59:135–150. https://doi.org/10.1590/2175-7860200859108
Nordby HE, Nagy S (1977) Hydrocarbons from epicuticular waxes of Citrus peels. Phytochemistry 16:1393–1397. https://doi.org/10.1016/S0031-9422(00)88789-0
Oliveira AFM, Meirelles ST, Salatino A (2003) Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Ciênc 75:431–439. https://doi.org/10.1590/s0001-37652003000400003
Pirani JR, Groppo M (2015) Rutaceae. In: Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB212. Accessed 19 July 2021
Pirani JR, Groppo M (2020) Rutaceae. In: Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. http://reflora.jbrj.gov.br/reflora/floradobrasil/FB212. Accessed 20 Apr 2021
Pirani JR, Groppo M (2010) Rutaceae. Catálogo de Plantas e Fungos do Brasil. Instituto de Pesquisa Jardim Botânico do Rio de Janeiro, Rio de Janeiro, pp 1591–1593
Riederer M, Schneider G (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. Planta 180:154–165. https://doi.org/10.1007/BF00193990
Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann Bot 90:517–524. https://doi.org/10.1093/aob/mcf189
Skorupa LA, Salatino MLF, Salatino A (1998) Hydrocarbons of leaf epicuticular waxes of Pilocarpus (Rutaceae): taxonomic meaning. Biochem Syst Ecol 26:655–662. https://doi.org/10.1016/S0305-1978(98)80002-1
Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro. https://biblioteca.ibge.gov.br/biblioteca-catalogo.html. Acessed 19 July 2021
Voltolini CH, Santos M (2011) Variações na morfoanatomia foliar de Aechmea lindenii (E. Morren) Baker var. lindenii (Bromeliaceae) sob distintas condições ambientais. Acta Bot Brasilica 25:2–10. https://doi.org/10.1590/S0102-33062011000100002
Wang J, Hao H, Liu R, Ma Q, Xu J, Chen F, Deng X (2014) Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and ‘Newhall’navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chem 153:177–185. https://doi.org/10.1016/j.foodchem.2013.12.021