Contrasting geochemical signatures between fertile and barren granites and multi-isotope (Sr–Nd–Pb–S–He) study in the Lamasu–Saibo deposit, NW China: Implications for petrogenesis and ore genesis

Ore Geology Reviews - Tập 149 - Trang 105114 - 2022
Jun Liu1,2, Jing–Wen Mao1, Chun–Kit Lai3, Xiao–Tong Wang4, Jun–Cheng He4, Hong–Jing Xie5
1MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
2Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Hobart, Tasmania 7001, Australia
3Global Project Generation and Targeting, Fortescue Metals Group Ltd., East Perth, WA 6004, Australia
4School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
5Beijing Institute of Geology and Mineral Resources, Beijing 100012, China

Tài liệu tham khảo

Ballard, 2002, Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: Application to porphyry copper deposits of northern Chile, Contrib. to Mineral. Petrol., 144, 347, 10.1007/s00410-002-0402-5 Birkeland, 1990, Pb–isotope analysis of sulfides and K feldspars; a short introduction to analytical techniques and evolution of results: Mineralogist Museum, University of Oslo, Internal Skriftserie, 15, 1 Blevin, 1992, The role of magma sources, oxidation states and fractionation in determining the granitoid metallogeny of eastern Australia, Earth and environmental science transactions of the royal society of edinburgh, 83, 305, 10.1017/S0263593300007987 Botcharnikov, 2010, High gold concentrations in sulfide-bearing magma under oxidizing conditions, Nature Geo., 4, 112, 10.1038/ngeo1042 Boynton, 1984, Cosmochemistry of the rare earth elements: Meteorite studies, Geochemistry, 2, 63 Buret, 2016, From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina), Earth Planet. Sci. Lett., 450, 120, 10.1016/j.epsl.2016.06.017 Burnard, 1999, Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta, 63, 1595, 10.1016/S0016-7037(99)00108-8 Burnham, 1997, Magmas and hydrothermal fluids, 63 Candela, 1992, Controls on ore metal ratios in granitoid-related ore systems: an experimental and computational approach, Transactions of the royal society of edinburgh earth sciences, 83, 317, 10.1017/S0263593300007999 Carranza, 2012, Primary geochemical characteristics of mineral deposits–implications for exploration, Ore Geol. Rev., 45, 1, 10.1016/j.oregeorev.2012.02.002 Carroll, 1988, Sulfur speciation in hydrous experimental glasses of varying oxidation state-results from measured wavelength shifts of sulfur X-rays, Am. Mineral., 73, 845 Chapman, 2017, Spatial and temporal radiogenic isotopic trends of magmatism in Cordilleran orogens, Gondwana Res., 48, 189, 10.1016/j.gr.2017.04.019 Chelle-Michou, 2014, Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru), Lithos, 198, 129, 10.1016/j.lithos.2014.03.017 Chen, 2000, Formation of positive εNd(T) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization: implication for Phanerozoic crustal growth, Tectonophysics, 328, 53, 10.1016/S0040-1951(00)00177-3 Chiaradia, 2014, Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geo., 7, 43, 10.1038/ngeo2028 Cline, 1995, Genesis of porphyry copper deposits: the behavior of water, chloride, and copper in crystallizing melts, Arizona Geol. Soc. Digest., 20, 69 Devine, 1995, Petrogenesis of the basalt–andesite–dacite association of Grenada, Lesser Antilles island arc, revisited, J. Volcan. Geo. Res., 69, 1, 10.1016/0377-0273(95)00024-0 Dilles, 2015, Zircon compositional evidence for sulfur degassing from ore-forming arc magmas, Econ. Geol., 110, 241, 10.2113/econgeo.110.1.241 Ding, 2016, Pyrite Re–Os and zircon U-Pb dating of the Tugurige gold deposits in the western part of the Xing’an–Mongolia Orogenic Belt, China and its geological significance: Ore Geol, Rev., 72, 669 Dong, 2018, Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan China and its geological significance, Ore Geol. Rev., 100, 99, 10.1016/j.oregeorev.2016.10.030 Du, 2001, Precise Re-Os dating for molybdenite by ID–NTIMS with tube sample preparation, Rock and Mineral Anal., 20, 247 Du, 2004, Preparation and certification of Re–Os dating reference materials: molybdenite HLP and JDC, Geo. Geo. Res., 28, 41 Duan, 2016, Noble gas isotope analytical techniques and its application in economic geology research, Acta Geol. Sin., 90, 1908 Elburg, 2002, Geochemical trends across an arc–continent collision zone: Magma sources and slab–wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochim. Cosmochim. Acta, 66, 2771, 10.1016/S0016-7037(02)00868-2 Feng, 2009, Re–Os dating of pyrite from the Tuolugou stratabound Co (Au) deposit, eastern Kunlun Orogenic Belt, northwestern China, Ore Geol. Rev., 36, 213, 10.1016/j.oregeorev.2008.10.005 Fiebig, 2009, Excess methane in continental hydrothermal emissions is abiogenic, Geology, 37, 495, 10.1130/G25598A.1 Forster, 1997, An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks, Lithos, 40, 261, 10.1016/S0024-4937(97)00032-7 Gao, 2014, Zircon SHRIMP U-Pb and molybdenite Re-Os dating of Halegati Cu–Fe polymetallic deposit in West Tianshan Mountains and its geological implications, Mineral Deposits, 33, 386 Gao, 2009, Accretionary orogenic process of Western, China. Geol. Bull. China, 28, 1804 Gao, 2015, Record of assembly and breakup of Rodinia in the Southwestern Altaids: evidence from Neoproterozoic magmatism in the Chinese Western Tianshan Orogen, J. Asian Earth Sci., 113, 173, 10.1016/j.jseaes.2015.02.002 Gu, 2014, The Fe–Cu–Mo polymetallic mineralization system related to intermediate–acid intrusions in the Boluokenu metallogenic belt of the West tianshan, xinjiang: rock– and ore–forming geochemistry and tectonomagmatic evolution, Earth Sci. Front., 21, 156 Han, 2020, Late Paleozoic metallogenesis and evolution of the Chinese Western Tianshan Collage, NW China, Central Asia orogenic belt, Ore Geol. Rev., 124, 10.1016/j.oregeorev.2020.103643 Han, 2018, Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean, Earth Sci. Rev., 186, 129, 10.1016/j.earscirev.2017.09.012 Harris, 2003, Melt inclusions in veins: Linking magmas and porphyry Cu deposits, Science, 302, 2109, 10.1126/science.1089927 Hattori, 1993, High-sulfur magma, a product of fluid discharge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines, Geology, 21, 1083, 10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2 Hedenquist, 1994, The role of magmas in the formation of hydrothermal ore deposits, Nature, 370, 519, 10.1038/370519a0 Hedenquist, 2013, Modeling the formation of advanced argillic lithocaps: volcanic vapor condensation above porphyry intrusions, Econ. Geol., 108, 1523, 10.2113/econgeo.108.7.1523 Heinrich, 1999, Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions, Geology, 27, 755, 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2 Holzheid, 2001, Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition, Geochim. Cosmochim. Acta, 65, 1933, 10.1016/S0016-7037(01)00545-2 Hoskin, 2003, The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geo., 53, 27, 10.2113/0530027 Hou, 2009, In situ U-Pb dating using laser ablation–multi-ion counting–ICP-MS, Mineral Deposits, 28, 481 Hu, 2012, Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, Southeastern China. Miner. Deposita, 47, 623, 10.1007/s00126-011-0396-x Hu, 2000, Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I, Isotopic characterization of basement rocks. Tectonophysics, 328, 15 Huang, 2019, High water contents of magmas and extensive fluid exsolution during the formation of the Yulong porphyry Cu-Mo deposit, eastern Tibet, J. Asian Earth Sci., 176, 168, 10.1016/j.jseaes.2019.02.008 Huang, 2020, Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt, Earth Sci. Rev., 10.1016/j.earscirev.2020.103255 Jahn, 2000, Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic, Episodes, 23, 82, 10.18814/epiiugs/2000/v23i2/001 Jahn, B.M., 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas J, Fletcher CJN, Ali JR, Aitchison JC. (Eds.), Aspects of the Tectonic Evolution of China. Geol. Soc. Lon. Spec. Publ. 226, 73–100. F.D. Jia C.Q. Zhang H. Liu X.Y. Meng Z.G. Kong In situ major and trace element compositions of apatite from the Yangla skarn Cu deposit, southwest China: Implications for petrogenesis and mineralization 2020 Rev Ore Geol doi.org/10.1016/j.oregeorev.2020.103360. Jiang, 2018, Application of in situ titanite U-Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China. Ore Geol. Rev., 95, 325, 10.1016/j.oregeorev.2018.03.001 Jugo, 2009, Sulfur content at sulfide saturation in oxidized magmas, Geology, 37, 415, 10.1130/G25527A.1 Jugo, 2005, An Experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 10 GPa, J. Petrol., 46, 783, 10.1093/petrology/egh097 Kelley, 2009, Water and the oxidation state of subduction zone magmas, Science, 325, 605, 10.1126/science.1174156 Kendrick, 2001, Fluid inclusion noble gas and halogen evidence on the origin of Cu–porphyry mineralizing fluids, Geochim. Cosmochim. Acta, 65, 2651, 10.1016/S0016-7037(01)00618-4 Kepezhinskas, 1997, Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis, Geochim. Cosmochim. Acta, 61, 577, 10.1016/S0016-7037(96)00349-3 Kimura, 2013, Standardless determination of Nd isotope ratios in glasses and minerals using laser–ablation multiple–collector inductively coupled plasma mass spectrometry with a low–oxide molecular yield interface setup, J. Anal. Atom. Spec., 28, 1522, 10.1039/c3ja50109d Kiprianov, 2006, Regular trends in uptake of halogens by alkali silicate glass containing two glass-forming components, Russian J. App. Chem., 79, 20, 10.1134/S1070427206010058 Kiprianov, 2006, Oxyhalide silicate glasses. Glass Phy. Chem., 32, 1 Klemd, 2015, Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt): Geodynamic implications, Gondwana Res., 28, 1, 10.1016/j.gr.2014.11.008 Kusakabe, 2000, Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes, J. Volcan. Geo. Res., 97, 287, 10.1016/S0377-0273(99)00161-4 Kusebauch, 2015, Distribution of halogens between fluid and apatite during fluid-mediated replacement processes, Geochim. Cosmochim. Acta, 170, 225, 10.1016/j.gca.2015.08.023 Lee, 2012, Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 336, 64, 10.1126/science.1217313 Li, 2020, The role of reductive carbonaceous strata in the formation of porphyry copper ores, Acta Geosci. Sin., 41, 637 Liu, 2018 Liu, 2016, Calibration and correction of LA-ICP-MS and LA–MC–ICP-MS analyses for element contents and isotopic ratios, Solid Earth Sci., 1, 5, 10.1016/j.sesci.2016.04.002 Liu, 2019, Two stage gold mineralization of the Axi epithermal Au deposit, Western Tianshan, NW China: Evidence from Re–Os dating, S isotope, and trace elements of pyrite, Miner. Deposita Liu, 2018, Geology, geochronology and geochemistry of the Dabate Cu–Mo deposit, northern Chinese Tien Shan: Implications for spatial separation of copper and molybdenum mineralization, Ore Geol. Rev., 92, 542, 10.1016/j.oregeorev.2017.12.002 Loader, 2017, The effect of titanite crystallization on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility, Earth Planet. Sci. Lett., 472, 107, 10.1016/j.epsl.2017.05.010 Loucks, 2020, New magmatic oxybarometer using trace elements in zircon, J. Petrol., 1 Lu, 2016, Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au mineral deposits, Soc. Econ. Geol. Spec. Publ., 19, 329 Ludwig, 2003, Isoplot 3.09–A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special, Publication, 4, 70 Macdonald, 2000, The Lesser Antilles volcanic chain: A study in arc magmatism, Earth Sci. Rev., 49, 1, 10.1016/S0012-8252(99)00069-0 Mamyrin, 1984, 1 Mathez, 2005, Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid, Geochim. Cosmochim. Acta, 69, 1275, 10.1016/j.gca.2004.08.035 Meinert, 2005, World Skarn Deposits, Econ. Geol. 100th Anniversary, Volume, 299 Mengason, 2011, Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt rhyolite melt: impact of sulfide segregation on arc magma evolution, Geochim. Cosmochim. Acta, 75, 7018, 10.1016/j.gca.2011.08.042 Monna, 1998, Pb and Sr isotope measurements by inductively coupled plasma–mass spectrometer: efficient time management for precision improvement, Spec. Acta Part B: Atomic Spec., 53, 1317, 10.1016/S0584-8547(98)00164-5 Moyen, 2009, High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”, Lithos, 112, 556, 10.1016/j.lithos.2009.04.001 Mungall, 2002, Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 30, 915, 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 Muñoz, 2012, Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu-Mo related magmas, J. Petrol., 53, 1091, 10.1093/petrology/egs010 Myers, 1983, The system Fe-Si-O: oxygen buffer calibrations to 1500 K, Contrib. to Mineral. Petrol., 82, 75, 10.1007/BF00371177 Pan, 2016, Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China, Lithos, 254–255, 118, 10.1016/j.lithos.2016.03.010 Pearce, 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 25, 956, 10.1093/petrology/25.4.956 Pearce, 1995, Tectonic implications of the composition of volcanic arc magmas, Annual Rev. Earth Planet. Sci., 23, 251, 10.1146/annurev.ea.23.050195.001343 Pearce, 1999, Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc–basin systems, J. Petrol., 40, 1579, 10.1093/petroj/40.11.1579 Pettke, 2005, Magmatic–to–hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry, Chem. Geol., 220, 191, 10.1016/j.chemgeo.2005.02.017 Pirajno, 2011, A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China, Geosci. Front., 2, 157, 10.1016/j.gsf.2011.03.006 Richards, 2011, High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: just add water, Econ. Geol., 106, 1075, 10.2113/econgeo.106.7.1075 Richards, 2015, The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny, Lithos, 233, 27, 10.1016/j.lithos.2014.12.011 Richards, 2016, Clues to hidden copper deposits, Nature Geoscience, 9, 195, 10.1038/ngeo2656 Robb, 2005, Introduction to Ore–forming Processes, Blackwell Publishing, 113 Rollinson, 1993, 1 Rudnik, 2003, The composition of the continental crust, vol. 3, 1 She, 2016, Apatite geochemistry of the Taihe layered intrusion, SW China: implications for the magmatic differentiation and the origin of apatite-rich Fe-Ti oxide ores, Ore Geol. Rev., 78, 151, 10.1016/j.oregeorev.2016.04.004 Shen, 2013, Country–rock contamination of magmas associated with the Baogutu porphyry Cu deposit, Xinjiang, China, Lithos, 177, 451, 10.1016/j.lithos.2013.07.019 Shen, 2015, Oxidation condition and metal fertility of granitic magmas: Zircon trace–element data from porphyry Cu deposits in the Central Asian orogenic belt, Econ. Geol., 110, 1861, 10.2113/econgeo.110.7.1861 Shi, 2011 Shu, 2019, Zircon trace elements and magma fertility: insights from porphyry (-skarn) Mo deposits in NE China, Miner. Deposita, 54, 645, 10.1007/s00126-019-00867-7 Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3 Simon, 2011, The role of magmatic sulfur in the formation of ore deposits, Rev. Miner. Geochem., 73, 513, 10.2138/rmg.2011.73.16 Sláma, 2008, Plešovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis, Chem. Geol., 249, 1, 10.1016/j.chemgeo.2007.11.005 SMC (Saibo Mining Company),, 2015 Stuart, 1995, Resolving mantle and crustal contributions to ancient hydrothermal fluids: He–Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochim. Cosmochim. Acta, 59, 4663, 10.1016/0016-7037(95)00300-2 Sun, 2020 Sun, 2004, Release of gold–bearing fluids in convergent margin magmas prompted by magnetite crystallization, Nature, 431, 975, 10.1038/nature02972 Sun, 2015, Porphyry deposits and oxidized magmas, Ore Geol. Rev., 65, 97, 10.1016/j.oregeorev.2014.09.004 Sun, 2013, The link between reduced porphyry copper deposits and oxidized magmas, Geochim. Cosmochim. Acta, 103, 263, 10.1016/j.gca.2012.10.054 Tang, 2010, Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post–collisional setting, Lithos, 119, 393, 10.1016/j.lithos.2010.07.010 Tang, 2017, Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition, J. Geophy. Res. Solid Earth, 122, 1934, 10.1002/2016JB013678 Tatsumi, 1995 Taylor, 1985, 54 Tolstikhin, 1978, A review: some recent advances in isotope geochemistry of light rare gases, 27 Trail, 2012, Ce and Eu anomalies in zircon as proxies for oxidation state of magmas, Geochim. Cosmochim. Acta, 97, 70, 10.1016/j.gca.2012.08.032 Turekian, 1961, Distribution of the elements in some major units of the Earth’s crust, Geol. Soci. Am. Bull., 72, 175, 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 Wang, 2009, Evolution of calc–alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan, Inter. J. Earth Sci., 98, 1275, 10.1007/s00531-008-0408-y Wang, 2018, Ore genesis and hydrothermal evolution of the Kendenggao’er copper-molybdenum deposit, western Tianshan: Evidence from isotopes (S, Pb, H, O) and fluid inclusions, Ore Geol. Rev., 100, 294, 10.1016/j.oregeorev.2018.01.004 Wang, 2007, Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt, Chem. Geol., 236, 42, 10.1016/j.chemgeo.2006.08.013 Warner, 1998, Apatite as a monitor of fractionation, degassing, and metamorphism in the Sudbury igneous complex, Ontario. The Canadian Miner., 36, 981 Webster, 2009, Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: felsic silicate systems at 200MPa, Geochim. Cosmochim. Acta, 73, 559, 10.1016/j.gca.2008.10.034 White, 2013, 330 Whiticar, 1999, Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geol., 161, 291, 10.1016/S0009-2541(99)00092-3 Wilkinson, 2013, Triggers for the formation of porphyry ore deposits in magmatic arcs, Nature Geo., 6, 917, 10.1038/ngeo1940 Williams-Jones, 2012, Hydrothermal mobilization of the Rare Earth elements – a Tale of “Ceria” and “Yttria”, Elements, 355, 10.2113/gselements.8.5.355 Windley, 1990, Paleozoic accretion and Cenozoic redeformation of the Chinese Tianshan Range, Central Asia, Geology, 18, 128, 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2 Windley, 2007, Tectonic models for accretion of the Central Asian Orogenic Belt, J. Geol. Soc., 164, 31, 10.1144/0016-76492006-022 Wu, 2016, Mo deposits in Northwest China: geology, geochemistry, geochronology and tectonic setting, Ore Geol. Rev., 81, 641, 10.1016/j.oregeorev.2016.07.010 Wu, 2018, Mantle volatiles and heat contributions in high sulfidation epithermal deposit from the Zijinshan Cu-Au-Mo-Ag orefield, Fujian Province, China: Evidence from He and Ar isotopes, Chem. Geol., 480, 58, 10.1016/j.chemgeo.2017.08.005 Xiao, 2003, Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt, Tectonics, 10.1029/2002TC001484 Xiao, 2008, Middle cambrian to permian subduction–related accretionary orogenesis of northern xinjiang, nw china: implications for the tectonic evolution of central asia, J Asian Earth Sci., 32, 102, 10.1016/j.jseaes.2007.10.008 Xiao, 2009, Geodynamic processes and metallogenesis of the Central Asian and related orogenic belts, Gondwana Res., 16, 167, 10.1016/j.gr.2009.05.001 Xiao, 2013, Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage, Gondwana Res., 23, 1316, 10.1016/j.gr.2012.01.012 Xie, 2018, Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: implications for petrogenesis and mineralization, Ore Geol. Rev., 96, 98, 10.1016/j.oregeorev.2018.04.013 Xie, 2013, Geochronology, geochemistry and metallogenic implications of the Lamasu intrusion in Western Tianshan, NW China. Earth Sci. Front., 20, 190 Xu, 2013, Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China: Remnant Ocean model, Earth Sci. Rev., 126, 178, 10.1016/j.earscirev.2013.08.005 Xu, 2005, Accurate dating of Bayingou ophiolite in northern Tianshan mountains and its tectonic significance, J. Earth Sci. Env., 27, 17 Xue, 2014, Tectonic–metallogenic evolution of Western Tianshan giant Au–Cu–Zn–Pb metallogenic belt and prospecting orientation, Acta Geol. Sin., 88, 2490 Yang, 1998, Geological features and genesis of the Lamasu copper deposit in Bole County, Xinjiang. Geol. Rev., 44, 23 Zajacz, 2012, Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation, Geochim. Cosmochim. Acta, 91, 140, 10.1016/j.gca.2012.05.033 Zajacz, 2013, Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas, Geochim. Cosmochim. Acta, 112, 288, 10.1016/j.gca.2013.02.026 Zhan, 2018, Granite zircon U-Pb geochronology and geochemistry and the geological significance of the Saibo copper deposit in the Western Tianshan Mountains, Xinjiang Province, China. Ore Geol. Rev., 99, 58, 10.1016/j.oregeorev.2018.06.001 X.Z. Zhan Study on metallogenesis and prospecting technology of Saibo copper deposits, Xinjiang 2019 China University of Mining and Technology Ph.D. Dissertation 1–143 (in Chinese with English abstract). Zhang, 2016, Petrogenesis of the Seleteguole granitoids from Jinhe County in Xinjiang (West China): Implications for the tectonic transformation of Northwest Tianshan, Lithos, 256–257, 148, 10.1016/j.lithos.2016.04.002 Zhang, 2017, Oxygen fugacity and porphyry mineralization: a zircon perspective of Dexing porphyry Cu deposit, China. Geochim. Cosmochim. Acta, 206, 343, 10.1016/j.gca.2017.03.013 Zhang, 2008, Keersai granite diorite–porphyry body zircon SHRIMP U-Pb dating and the prospecting significance in Bole city, Xinjiang. Xinjiang Geol., 26, 340 Zhang, 2008, Metallogenic epoch and ore–forming environment of the Lamasu skarn–porphyritic Cu–Zn deposit, Western Tianshan, Xinjiang, NW China. Acta Geol. Sin., 82, 731, 10.1111/j.1755-6724.2008.tb00625.x Zhang, 1998 Zhang, 2009, Geochronology, geochemistry of the ores–bearing porphyries in the Lailisigao’er region, Western Tianshan: Implications for their tectonic setting and mineralization, Acta Petrol. Sin., 25, 1319 Zhang, 2010, Petrology and geochemistry of the ore–forming porphyries in the Lamasu copper deposit, Western Tianshan: Implications for petrogenesis, Acta Petrol. Sin., 26, 680 Zhang, 2012, Petrogenesis of the Kekesai composite intrusion, Western Tianshan, NW China: Implications for tectonic evolution during late Paleozoic time, Lithos, 146–147, 65, 10.1016/j.lithos.2012.04.002 Zhao, 2008, Underplating–related adakites in Xinjiang Tianshan, China, Lithos, 102, 374, 10.1016/j.lithos.2007.06.008 Zhao, 2009, Late Paleozoic under–plating in North Xinjiang: Evidence from shoshonites and adakites, Gondwana Res., 16, 216, 10.1016/j.gr.2009.03.001 Zhou, 2004, Geochemistry and petrogenesis of 270 Ma Ni–Cu–(PGE) sulfide–bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt, Chem. Geol., 209, 233, 10.1016/j.chemgeo.2004.05.005 Zhu, 2011, Geochronology and geochemistry of the Kekesai intrusion in Western Tianshan, NW China and its geological implications, Acta Petrol. Sin., 27, 3041 Zhu, 2012, Geochronology and fluid inclusion studies of the Lailisigaoer and Lamasu porphyry–skarn Cu–Mo deposits in Northwestern Tianshan, China. J. Asian Earth Sci., 49, 116, 10.1016/j.jseaes.2011.12.013 Zhu, 2005, The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in Western Tianshan Mountains, Chinese Sci. Bull., 50, 2201, 10.1007/BF03182672