Contrasting fluid behavior during two styles of greisen alteration leading to distinct wolframite mineralizations: The Echassières district (Massif Central, France)
Tài liệu tham khảo
Archer, 1992, Thermodynamic properties of the NaCl+ H2O system. II. Thermodynamic properties of NaCl (aq), NaCl⋅ 2H2 (cr), and phase equilibria, J. Phys. Chem. Ref. Data, 21, 793, 10.1063/1.555915
Aubert, G., 1969. Les coupoles granitiques de Montebras et d'Échassières:(Massif Central français) et la genèse de leurs minéralisations en étain, lithium, tungstène et béryllium (Vol. 46). Éditions BRGM.
Audétat, 1998, Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions, Science, 279, 2091, 10.1126/science.279.5359.2091
Bakker, 2003, Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties, Chem. Geol., 194, 3, 10.1016/S0009-2541(02)00268-1
Bodnar, 1993, Revised equation and table for determining the freezing point depression of H2O-NaCl solutions, Geochim. Cosmochim. Acta, 57, 683, 10.1016/0016-7037(93)90378-A
Bodnar, 1994, Fluid inclusions in minerals: methods and applications, Pontignano. Siena, 117
Bons, 2012, A review of the formation of tectonic veins and their microstructures, J. Struct. Geol., 43, 33, 10.1016/j.jsg.2012.07.005
Breiter, 2012, Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné hory/Erzgebirge Mts, Central Europe, Lithos, 151, 105, 10.1016/j.lithos.2011.09.022
Breiter, 2017, Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic–hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic), Eur. J. Mineral., 29, 727, 10.1127/ejm/2017/0029-2650
Breiter, 2017, Quartz chemistry–a step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe, Ore Geol. Rev., 90, 25, 10.1016/j.oregeorev.2017.10.013
Breiter, 2017, Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe, Lithos, 292, 198, 10.1016/j.lithos.2017.08.015
Breiter, 2019, Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge, Ore Geol. Rev., 106, 12, 10.1016/j.oregeorev.2019.01.013
Burt, 1981, Acidity-salinity diagrams; application to greisen and porphyry deposits, Econ. Geol., 76, 832, 10.2113/gsecongeo.76.4.832
Calagari, 2004, Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran, J. Asian Earth Sci., 23, 179, 10.1016/S1367-9120(03)00085-3
Campbell, 1990, Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England, Geochim. Cosmochim. Acta, 54, 673, 10.1016/0016-7037(90)90363-P
Charoy, 2003, Evidence of Sr mobility in and around the albite–lepidolite–topaz granite of Beauvoir (France): an in-situ ion and electron probe study of secondary Sr-rich phosphates, Contrib. Miner. Petrol., 145, 673, 10.1007/s00410-003-0458-x
Charoy, B., 1981. Post-magmatic processes in south-west England and Brittany. Proc. Ussher Society, 5, 101–115.
Cheilletz, 1992, Sci. Terre, 315, 329
Chen, 2018, The link between fluid evolution and vertical zonation at the Maoping tungsten deposit, Southern Jiangxi, China: fluid inclusion and stable isotope evidence, J. Geochem. Explor., 192, 18, 10.1016/j.gexplo.2018.01.001
Chen, 2019, The Genetic Association between Quartz Vein-and Greisen-Type Mineralization at the Maoping W-Sn Deposit, Southern Jiangxi, China: Insights from Zircon and Cassiterite U–Pb Ages and Cassiterite Trace Element Composition, Minerals, 9, 411, 10.3390/min9070411
Cui, 2019, Genesis of the Xiaolonghe quartz vein type Sn deposit, SW China: insights from cathodoluminescence textures and trace elements of quartz, fluid inclusions, and oxygen isotopes, Ore Geol. Rev., 111, 10.1016/j.oregeorev.2019.05.015
Cuney, 1992, The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization, Econ. Geol., 87, 1766, 10.2113/gsecongeo.87.7.1766
Do Couto, 2016, Monazite U-Th–Pb EPMA and zircon U–Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central, Int. J. Earth Sci., 105, 557, 10.1007/s00531-015-1184-0
Dobeš, 2005, Fluid inclusion planes and paleofluid records in the Podlesí granite, Krušné hory Mts., Czech Republic, Bull. Geosci., 80, 2
Dubois, 2010, Investigation of the H2O-NaCl-LiCl system: a synthetic fluid inclusion study and thermodynamic modeling from− 50° to+ 100° C and up to 12 mol/kg, Econ. Geol., 105, 329, 10.2113/gsecongeo.105.2.329
Duthou, 1987, Etude isotopique Rb-Sr de l'apex granitique d'Echassières (Granite des Colettes, granite de Beauvoir), Géol. Fr., 2–3, 63
Ellis, A.J., 1973. Chemical processes in hydrothermal systems-a review. In: Proceedings of Symposium on Hydrogeochemistry, Clarke, Vol. 1, pp. 1–26.
Fall, 2018, How precisely can the temperature of a fluid event be constrained using fluid inclusions?, Econ. Geol., 113, 1817, 10.5382/econgeo.2018.4614
Faure, 2002, Late Viséan thermal event in the northern part of the French Massif Central: new 40 Ar/39 Ar and Rb–Sr isotopic constraints on the Hercynian syn-orogenic extension, Int. J. Earth Sci., 91, 53, 10.1007/s005310100202
Fonteilles, 1987, La composition chimique des micas lithinifères (et autres minéraux) des granites d'Echassières comme image de leur évolution magmatique, Géol. Fr., 2–3, 149
Gagny, 1987, Contribution de la pétrologie structurale à la connaissance des conditions de mise en place et de structuration complexe du granite des Colettes (Massif d'Echassières, Massif Central Français), Géol. Fr., 2–3, 47
Goldstein, R.H., Reynolds, T.J., 1994. Fluid inclusion microthermometry. In: Systematics of Fluid Inclusions in Diagenetic Minerals, Chapter 7.
Haar, 1984
Halter, 1996, The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Nova Scotia, Econ. Geol., 91, 368, 10.2113/gsecongeo.91.2.368
Halter, 1998, Modeling fluid–rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization, Chem. Geol., 150, 1, 10.1016/S0009-2541(98)00050-3
Harlaux, 2017, Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France): insights from LA-ICPMS analysis of primary fluid inclusions, Geofluids, 2017, 10.1155/2017/1925817
Harlaux, 2018, 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite, Miner. Deposita, 53, 21, 10.1007/s00126-017-0721-0
Heinrich, 1990, The chemistry of hydrothermal tin (-tungsten) ore deposition, Econ. Geol., 85, 457, 10.2113/gsecongeo.85.3.457
Hu, 2017, The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model, J. Asian Earth Sci., 137, 9, 10.1016/j.jseaes.2016.10.016
Jiang, 2019, Fluid inclusion and isotopic (C, H, O, S and Pb) constraints on the origin of late Mesozoic vein-type W mineralization in northern Guangdong, South China, Ore Geol. Rev., 112, 10.1016/j.oregeorev.2019.103007
Korges, 2018, Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation, Geology, 46, 75, 10.1130/G39601.1
Launay, 2019, Dynamic permeability related to greisenization reactions in Sn-W Ore deposits: quantitative petrophysical and experimental evidence, Geofluids, 2019, 10.1155/2019/5976545
Lecumberri-Sanchez, 2017, Fluid-rock interaction is decisive for the formation of tungsten deposits, Geology, 45, 579, 10.1130/G38974.1
Legros, 2019, Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi province (China), Chem. Geol., 508, 92, 10.1016/j.chemgeo.2018.11.021
Li, W.S., Ni, P., Pan, J.Y., Wang, G.G., Chen, L.L., Yang, Y.L., Ding, J.Y., 2018. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. J. Geochem. Exploration, 192, 1–17. Doi:10.1016/j.gexplo.2017.11.013.
Liu, X., Ma, Y., Xing, H., Zhang, D., 2018. Chemical responses to hydraulic fracturing and wolframite precipitation in the vein-type tungsten deposits of southern China. Ore Geol. Rev., 102, 44–58. Doi:10.1016/j.oregeorev.2018.08.027.
Liu, 2019, Double-vein (ore-bearing vs. ore-free) structures in the Xitian ore field, South China: Implications for fluid evolution and mineral exploration, Ore Geol. Rev., 115, 10.1016/j.oregeorev.2019.103181
Liu, 2019, Fault-fluid evolution in the Xitian W-Sn ore field (South China): Constraints from scheelite texture and composition, Ore Geol. Rev., 114, 10.1016/j.oregeorev.2019.103140
Mao, 2013, Geology and molybdenite Re–Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China, Ore Geol. Rev., 53, 422, 10.1016/j.oregeorev.2013.02.005
Melleton, J., Gloaguen, E., Frei, D., August 2015. Rare-elements (Li–Be–Ta–Sn–Nb) magmatism in the European Variscan belt, a review. In: Proceedings of the 13th Biennial SGA Meeting, Vol. 2, pp. 24–27.
Merceron, 1992, Hydrothermal alterations in the Echassieres granitic cupola (Massif Central, France), Contrib. Mineral Petrol., 112, 279, 10.1007/BF00310461
Michaud, 2019, The H/F ratio as an indicator of contrasted wolframite deposition mechanisms, Ore Geol. Rev., 104, 266, 10.1016/j.oregeorev.2018.10.015
Mitra, 2009, Solubility and dissolution rate of silica in acid fluoride solutions, Geochim. Cosmochim. Acta, 73, 7045, 10.1016/j.gca.2009.08.027
Moncada, 2012, Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: application to exploration, J. Geochem. Explor., 114, 20, 10.1016/j.gexplo.2011.12.001
Moncada, 2017, Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México, Ore Geol. Rev., 89, 143, 10.1016/j.oregeorev.2017.05.024
Monnier, 2018, Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: the Beauvoir Granite (Echassières district), France, Lithos, 320, 355, 10.1016/j.lithos.2018.09.024
Monnier, 2019, Multiple Generations of Wolframite Mineralization in the Echassieres District (Massif Central, France), Minerals, 9, 637, 10.3390/min9100637
Monnin, 2002, Thermodynamics of the LiCl+ H2O system, J. Chem. Eng. Data, 47, 1331, 10.1021/je0200618
Moura, 2014, Metallogenesis at the Carris W-Mo–Sn deposit (Gerês, Portugal): constraints from fluid inclusions, mineral geochemistry, Re–Os and He–Ar isotopes, Ore Geol. Rev., 56, 73, 10.1016/j.oregeorev.2013.08.001
Naumov, 2011, Physicochemical parameters of the formation of hydrothermal deposits: a fluid inclusion study. I. Tin and tungsten deposits, Geochem. Int., 49, 1002, 10.1134/S0016702911100041
Ni, 2015, Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China, Ore Geol. Rev., 65, 1078, 10.1016/j.oregeorev.2014.09.017
Ni, 2015, An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China, Ore Geol. Rev., 65, 1062, 10.1016/j.oregeorev.2014.08.007
Noronha, 1992, Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal, Mineralium Deposita, 27, 72, 10.1007/BF00196084
O’reilly, 1997, Fluid inclusion study of the Ballinglen W-Sn-sulphide mineralization, SE Ireland, Mineralium Deposita, 32, 569, 10.1007/s001260050123
Pacák, 2019, Trace-element chemistry of barren and ore-bearing quartz of selected Au, Au-Ag and Sb-Au deposits from the Bohemian Massif, J. Geosci., 64, 19, 10.3190/jgeosci.279
Pan, 2019, Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions, Am. Mineralogist: J. Earth Planetary Mater., 104, 1092, 10.2138/am-2019-6958
Pin, C., 1991. Sr-Nd isotopic study of igneous and metasedimentary enclaves in some Hercynian granitoids from the Massif Central, France. In: Enclaves and granite petrology, (pp. 333–343.
Pirajno, F., 2009. Intrusion-related hydrothermal mineral systems. In: Hydrothermal processes and mineral systems. Springer, Dordrecht, pp. 205–354. Doi:10.1007/978-1-4020-8613-7_4.
Raimbault, 1995, Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central, Econ. Geol., 90, 548, 10.2113/gsecongeo.90.3.548
Reynolds, 1988
Roedder, E., 1984. Volume 12: Fluid inclusions. Reviews in mineralogy, 12.
Rusk, 2011, Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry, Am. Mineral., 96, 703, 10.2138/am.2011.3701
Schulz, 2009, EMP-monazite age controls on PT paths of garnet metapelites in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central, Bulletin de la Société Géologique de France, 180, 271, 10.2113/gssgfbull.180.3.271
Schulz, 2001, PT-paths from metapelite garnet zonations, and crustal stacking in the Variscan inverted metamorphic sequence of La Sioule, French Massif Central, Zeitschrift-Deutschen Geologischen Gesellschaft, 152, 1, 10.1127/zdgg/152/2001/1
Shepherd, 1985
Sibson, 1998, Stress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand, Ore Geology Rev., 13, 293, 10.1016/S0169-1368(97)00023-1
Sibson, 1988, High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits, Geology, 16, 551, 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
Štemprok, 1987, Greisenization (a review), Geol. Rundsch., 76, 169, 10.1007/BF01820580
Wagner, W., Pruss, A., 1993. International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16, 893 (1987). J. Phys. Chem. Reference Data, 22(3), 783–787. Doi:10.1063/1.555787.
Wang, 1992, Mineraux dissemines comme indicateurs du caractere pegmatitique du granite de Beauvoir, Massif d'Echassieres, Allier, France, The Canadian Mineralogist, 30, 763
Wang, 2019, Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region, South China, Ore Geology Rev., 103305
Wang, 2020, In situ Raman spectroscopic investigation of the hydrothermal speciation of tungsten: Implications for the ore-forming process, Chem. Geol., 532, 10.1016/j.chemgeo.2019.119299
Wang, 2019, An experimental study of the solubility and speciation of tungsten in NaCl-bearing aqueous solutions at 250, 300, and 350° C, Geochim. Cosmochim. Acta, 265, 313, 10.1016/j.gca.2019.09.013
Wang, 2017, Molybdenite Re–Os age, H-O–C–S–Pb isotopes, and fluid inclusion study of the Caosiyao porphyry Mo deposit in Inner Mongolia, China, Ore Geol. Rev., 81, 728, 10.1016/j.oregeorev.2016.07.008
Weatherley, 2013, Flash vaporization during earthquakes evidenced by gold deposits, Nat. Geosci., 6, 294, 10.1038/ngeo1759
Williams-Jones, 2005, 100th Anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits, Econ. Geol., 100, 1287, 10.2113/gsecongeo.100.7.1287
Williamson, 1997, Implications from inclusions in topaz for greisenisation and mineralisation in the Hensbarrow topaz granite, Cornwall, England, Contributions Mineral. Petrol., 127, 119, 10.1007/s004100050269
Wood, 2000, The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and m NaCl, Econ. Geol., 95, 143, 10.2113/gsecongeo.95.1.143
Yang, 2019, Metal source and wolframite precipitation process at the Xihuashan tungsten deposit, South China: Insights from mineralogy, fluid inclusion and stable isotope, Ore Geol. Rev., 111, 10.1016/j.oregeorev.2019.102965
Yasami, 2019, Distribution of alteration, mineralization and fluid inclusion features in porphyry–high sulfidation epithermal systems: the Chodarchay example, NW Iran, Ore Geol. Rev., 104, 227, 10.1016/j.oregeorev.2018.11.006
Yokart, 2003, Late-stage alteration and tin–tungsten mineralization in the Khuntan Batholith, northern Thailand, J. Asian Earth Sci., 21, 999, 10.1016/S1367-9120(02)00178-5
Zhao, 2017, Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China, J. Asian Earth Sci., 137, 109, 10.1016/j.jseaes.2016.12.047
Zheng, 2018, Fluid evolution of the Qiman Tagh W-Sn ore belt, East Kunlun Orogen, NW China, Ore Geol. Rev., 95, 280, 10.1016/j.oregeorev.2018.03.002