Hoạt động trì hoãn trái bên, nhưng không phải phân bổ alpha, chỉ số hóa việc ưu tiên thông tin để lưu trữ bộ nhớ làm việc

Attention, Perception, & Psychophysics - Tập 85 - Trang 718-733 - 2023
Svea C. Y. Schroeder1,2, David Aagten-Murphy3, Niko A. Busch1,2
1University of Münster, Münster, Germany
2Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Münster, Germany
3University of Cambridge, Cambridge, UK

Tóm tắt

Bộ nhớ làm việc vốn dĩ có giới hạn, điều này khiến việc lựa chọn và duy trì chỉ thông tin liên quan đến nhiệm vụ trở nên quan trọng, cùng với việc bảo vệ thông tin này khỏi sự phân tâm. Nghiên cứu trước đây đã gợi ý rằng hoạt động trì hoãn trái bên (CDA) và dao động alpha trái phải là những ứng cử viên thần kinh cho quá trình ưu tiên như vậy. Trong khi hầu hết công trình này tập trung vào sự phân tâm trong quá trình ghi nhớ, chúng tôi đã xem xét tác động của sự phân tâm bên ngoài diễn ra trong thời gian duy trì bộ nhớ. Những người tham gia đã ghi nhớ hướng của ba vật thể nằm lệch bên. Sau một khoảng thời gian duy trì không có phân tâm ban đầu, các yếu tố phân tâm xuất hiện ở cùng vị trí với các mục tiêu hoặc ở bán cầu bên đối diện. Sự phân tâm này được theo sau bởi một khoảng thời gian không có phân tâm khác. Kết quả của chúng tôi cho thấy biên độ CDA mạnh hơn trong khoảng thời gian trước khi có sự phân tâm so với khoảng thời gian sau sự phân tâm (tức là, biên độ CDA mạnh hơn phản ứng với các mục tiêu so với các yếu tố phân tâm). Sự giảm biên độ này phản ứng với các yếu tố phân tâm rõ rệt hơn ở những người tham gia có độ chính xác bộ nhớ cao hơn, chỉ ra việc ưu tiên và duy trì thông tin có liên quan thay vì thông tin không liên quan. Ngược lại, sự phân bổ alpha không thay đổi từ khoảng thời gian trước khi phân tâm so với khoảng thời gian sau phân tâm, và chúng tôi không tìm thấy mối tương quan nào giữa phân bổ alpha và độ chính xác bộ nhớ. Những kết quả này cho thấy rằng phân bổ alpha không đóng vai trò trực tiếp trong việc duy trì chọn lọc thông tin có liên quan đến nhiệm vụ hoặc ức chế các yếu tố phân tâm. Thay vào đó, phân bổ alpha phản ánh sự phân bổ sự chú ý không gian hiện tại tới thông tin nổi bật nhất mà không phân biệt liên quan đến nhiệm vụ. Ngược lại, CDA chỉ ra sự phân bổ linh hoạt của tài nguyên bộ nhớ làm việc tùy thuộc vào tính liên quan của nhiệm vụ.

Từ khóa

#bộ nhớ làm việc #hoạt động trì hoãn trái bên #phân bổ alpha #thông tin liên quan #phân tâm

Tài liệu tham khảo

Adam, K. C. S., Robison, M. K., & Vogel, E. K. (2018). Contralateral delay activity tracks fluctuations in working memory performance. Journal of Cognitive Neuroscience, 30(9), 1229–1240. https://doi.org/10.1162/jocn_a_01233 Bae, G. Y., & Luck, S. J. (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409–422. https://doi.org/10.1523/JNEUROSCI.2860-17.2017 Becker, R., Reinacher, M., Freyer, F., Villringer, A., & Ritter, P. (2011). How ongoing neuronal oscillations account for evoked fMRI variability. Journal of Neuroscience, 31(30), 11016–11027. https://doi.org/10.1523/JNEUROSCI.0210-11.2011 Becker, M. W., Hemsteger, S., & Peltier, C. (2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23(9/10), 1150–1167. https://doi.org/10.1080/13506285.2016.1149532 Belopolsky, A. V., & Theeuwes, J. (2009). No functional role of attention-based rehearsal in maintenance of spatial working memory representations. Acta Psychologica, 132(2), 124–135. https://doi.org/10.1016/j.actpsy.2009.01.002 Berggren, N., & Eimer, M. (2018). Feature-guided attentional capture cannot be prevented by spatial filtering. Biological Psychology, 134, 1–8. https://doi.org/10.1016/j.biopsycho.2018.02.007 Blacker, K. J., Ikkai, A., Lakshmanan, B. M., Ewen, J. B., & Courtney, S. M. (2016). The role of alpha oscillations in deriving and maintaining spatial relations in working memory. Cognitive, Affective, & Behavioral Neuroscience, 16(5), 888–901. https://doi.org/10.3758/s13415-016-0439-y Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969–1974. https://doi.org/10.1016/j.cub.2012.08.029 Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357 Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 47–63. https://doi.org/10.1016/j.jneumeth.2015.02.025 Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177–184. https://doi.org/10.1016/j.conb.2007.03.005 Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–185. de Vries, I. E. J., Savran, E., van Driel, J., & Olivers, C. N. L. (2019). Oscillatory mechanisms of preparing for visual distraction. Journal of Cognitive Neuroscience, 31(12), 1873–1894. https://doi.org/10.1162/jocn_a_01460 de Vries, I. E. J., Slagter, H. A., & Olivers, C. N. L. (2020). Oscillatory control over representational states in working memory. Trends in Cognitive Sciences, 24(2), 150–162. https://doi.org/10.1016/j.tics.2019.11.006 Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A. (2017). Ongoing alpha activity in V1 regulates visually driven spiking responses. Cerebral Cortex, 27(2), 1113–1124. https://doi.org/10.1093/cercor/bhv304 Feldmann-Wüstefeld, T., Vogel, E. K., & Awh, E. (2019). Contralateral delay activity indexes the number of items stored in working memory, not the current focus of spatial attention. Journal of Vision, 19(10), 203c. https://doi.org/10.1167/19.10.203c Ferrante, O., Patacca, A., Di Caro, V., Libera, C. D., & Chelazzi, L. (2017). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex. https://doi.org/10.1016/j.cortex.2017.09.027 Fodor, Z., Marosi, C., Tombor, L., & Csukly, G. (2020). Salient distractors open the door of perception: Alpha desynchronization marks sensory gating in a working memory task. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-76190-3 Foster, J. J., & Awh, E. (2019). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 34–40. https://doi.org/10.1016/j.copsyc.2018.11.001 Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E. (2015). The topography of alpha-band activity tracks the content of spatial working memory. Journal of Neurophysiology, 115(1), 168–177. https://doi.org/10.1152/jn.00860.2015 Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E. (2017). Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory. Current Biology, 27(20), 3216–3223.e6. https://doi.org/10.1016/j.cub.2017.09.031 Fukuda, K., & Vogel, E. K. (2019). Visual short-term memory capacity predicts the “bandwidth” of visual long-term memory encoding. Memory & Cognition, 47(8), 1481–1497. https://doi.org/10.3758/s13421-019-00954-0 Fukuda, K., Kang, M., & Woodman, G. F. (2016). Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations. Journal of Neurophysiology, 116(4), 1715–1727. https://doi.org/10.1152/jn.00991.2015 Gao, Z., Li, J., Liang, J., Chen, H., Yin, J., & Shen, M. (2009). Storing fine detailed information in visual working memory—Evidence from event-related potentials. Journal of Vision, 9(7), 1–12. https://doi.org/10.1167/9.7.17 Gao, Z., Yin, J., Xu, H., Shui, R., & Shen, M. (2011). Tracking object number or information load in visual working memory: Revisiting the cognitive implication of contralateral delay activity. Biological Psychology, 87(2), 296–302. https://doi.org/10.1016/j.biopsycho.2011.03.013 Gazzaley, A. (2011). Influence of early attentional modulation on working memory. Neuropsychologia, 49(6), 1410–1424. https://doi.org/10.1016/j.neuropsychologia.2010.12.022 Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. https://doi.org/10.1016/j.tics.2011.11.014 Goldmann, R. I. (2002). Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport, 13(18), 2487–2492. https://doi.org/10.1097/01.wnr.0000047685.08940.d0 Günseli, E., Fahrenfort, J. J., van Moorselaar, D., Daoultzis, K. C., Meeter, M., & Olivers, C. N. L. (2019). EEG dynamics reveal a dissociation between storage and selective attention within working memory. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-49577-0 Haegens, S., Luther, L., & Jensen, O. (2012). Somatosensory anticipatory alpha activity increases to suppress distracting input. Journal of Cognitive Neuroscience, 24(3), 677–685. https://doi.org/10.1162/jocn_a_00164 Hakim, N., Adam, K. C. S., Gunseli, E., Awh, E., & Vogel, E. K. (2019). Dissecting the neural focus of attention reveals distinct processes for spatial attention and object-based storage in visual working memory. Psychological Science, 30(4), 526–540. https://doi.org/10.1177/0956797619830384 Hakim, N., Feldmann-Wüstefeld, T., Awh, E., & Vogel, E. K. (2020). Perturbing neural representations of working memory with task-irrelevant interruption. Journal of Cognitive Neuroscience, 32(3), 558–569. https://doi.org/10.1162/jocn_a_01481 Hakim, N., Feldmann-Wüstefeld, T., Awh, E., & Vogel, E. K. (2021). Controlling the flow of distracting information in working memory. Cerebral Cortex, 31(7), 3323–3337. https://doi.org/10.1093/cercor/bhab013 Händel, B. F., Haarmeier, T., & Jensen, O. (2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23(9), 2494–2502. https://doi.org/10.1162/jocn.2010.21557 Hanning, N. M., Aagten-Murphy, D., & Deubel, H. (2018). Independent selection of eye and hand targets suggests effector-specific attentional mechanisms. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-27723-4 Hinne, M., Gronau, Q. F., van den Bergh, D., & Wagenmakers, E.-J. (2020). A conceptual introduction to bayesian model averaging. Advances in Methods and Practices in Psychological Science, 3(2), 200–215. https://doi.org/10.1177/2515245919898657 Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous neural oscillations bias perception by modulating baseline excitability. Journal of Neuroscience, 37(4), 807–819. https://doi.org/10.1523/JNEUROSCI.1432-16.2016 Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J. (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844–3851. https://doi.org/10.1152/jn.01234.2005 Klatt, L. I., Getzmann, S., Wascher, E., & Schneider, D. (2018). Searching for auditory targets in external space and in working memory: Electrophysiological mechanisms underlying perceptual and retroactive spatial attention. Behavioural Brain Research, 353, 98–107. https://doi.org/10.1016/j.bbr.2018.06.022 Klimesch, W. (2011). Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothesis. Brain Research, 1408, 52–71. https://doi.org/10.1016/j.brainres.2011.06.003 Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007 Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003 Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54(1), 146–157. https://doi.org/10.1111/psyp.12639 Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–284. https://doi.org/10.1038/36846 Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell’Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496–512. https://doi.org/10.1162/jocn.2009.21214 Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100–108. https://doi.org/10.1016/j.neubiorev.2016.01.003 Manza, P., Hau, C. L. V., & Leung, H. C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17), 5998–6002. https://doi.org/10.1523/JNEUROSCI.4641-13.2014 Medendorp, W. P., Kramer, G. F. I., Jensen, O., Oostenveld, R., Schoffelen, J. M., & Fries, P. (2007). Oscillatory activity in human parietal and occipital cortex shows hemispheric lateralization and memory effects in a delayed double-step saccade task. Cerebral Cortex, 17(10), 2364–2374. https://doi.org/10.1093/cercor/bhl145 Mössing, W. A., & Busch, N. A. (2020). Lateralized alpha oscillations are irrelevant for the behavioral retro-cueing benefit in visual working memory. PeerJ, 2020(6). https://doi.org/10.7717/peerj.9398 Mullen, T. (2012). NITRC: CleanLine: Tool/Resource Info. Available online at: http://www.nitrc.org/projects/cleanline Myers, N. E., Stokes, M. G., Walther, L., & Nobre, A. C. (2014). Oscillatory brain state predicts variability in working memory. Journal of Neuroscience, 34(23), 7735–7743. https://doi.org/10.1523/JNEUROSCI.4741-13.2014 Noonan, M. A. P., Adamian, N., Pike, A., Printzlau, F., Crittenden, B. M., & Stokes, M. G. (2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36(6), 1797–1807. https://doi.org/10.1523/JNEUROSCI.2133-15.2016 Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779–819. https://doi.org/10.3758/s13423-012-0272-4 Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, 107(16), 7580–7585. https://doi.org/10.1073/pnas.0913113107 Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16(2), 283–290. https://doi.org/10.3758/BF03203943 Poch, C., Valdivia, M., Capilla, A., Hinojosa, J. A., & Campo, P. (2018). Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism? Biological Psychology, 135, 112–116. https://doi.org/10.1016/j.biopsycho.2018.03.009 Rademaker, R. L., Bloem, I. M., De Weerd, P., & Sack, A. T. (2015). The impact of interference on short-term memory for visual orientation. Journal of Experimental Psychology: Human Perception and Performance, 41(6), 1650–1665. https://doi.org/10.1037/xhp0000110 Rerko, L., Souza, A. S., & Oberauer, K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42(5), 712–728. https://doi.org/10.3758/s13421-013-0392-8 Samaha, J., Iemi, L., Haegens, S., & Busch, N. A. (2020). Spontaneous brain oscillations and perceptual decision-making. Trends in Cognitive Sciences, 24(8), 639–653. https://doi.org/10.1016/j.tics.2020.05.004 Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., . . . Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846–1852. https://doi.org/10.1016/j.cub.2009.08.062 Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience and Biobehavioral Reviews, 34(7), 1015–1022. https://doi.org/10.1016/j.neubiorev.2009.12.006 Schneider, D., Göddertz, A., Haase, H., Hickey, C., & Wascher, E. (2019). Hemispheric asymmetries in EEG alpha oscillations indicate active inhibition during attentional orienting within working memory. Behavioural Brain Research, 359, 38–46. https://doi.org/10.1016/j.bbr.2018.10.020 Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9–18. https://doi.org/10.1016/j.tins.2008.09.012 Schroeder, S. C. Y., Ball, F., & Busch, N. A. (2018). The role of alpha oscillations in distractor inhibition during memory retention. European Journal of Neuroscience, 48(7), 2516–2526. https://doi.org/10.1111/ejn.13852 Souza, A. S., & Oberauer, K. (2017). The contributions of visual and central attention to visual working memory. Attention, Perception, & Psychophysics, 79(7), 1897–1916. https://doi.org/10.3758/s13414-017-1357-y Spaak, E., Bonnefond, M., Maier, A., Leopold, D. A., & Jensen, O. (2012). Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Current Biology, 22(24), 2313–2318. https://doi.org/10.1016/j.cub.2012.10.020 Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006 Töllner, T., Conci, M., & Müller, H. J. (2015). Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping, 36(3), 935–944. https://doi.org/10.1002/hbm.22677 van Diepen, R. M., Miller, L. M., Mazaheri, A., & Geng, J. J. (2016). The role of alpha activity in spatial and feature- based attention. ENeuro, 3(5), 1–11. https://doi.org/10.1523/ENEURO.0204-16.2016 van Moorselaar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953–6967. https://doi.org/10.1523/JNEUROSCI.0593-19.2019 Vissers, M. E., Gulbinaite, R., Van Den Bos, T., & Slagter, H. A. (2017). Protecting visual short-term memory during maintenance: Attentional modulation of target and distractor representations. Scientific Reports, 7(1), 1–14. https://doi.org/10.1038/s41598-017-03995-0 Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751. https://doi.org/10.1038/nature02447 Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. https://doi.org/10.1038/nature04171 Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105 Wang, B., & Theeuwes, J. (2018). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13–17. https://doi.org/10.1037/xhp0000472 Wang, S., Rajsic, J., & Woodman, G. F. (2019). The contralateral delay activity tracks the sequential loading of objects into visual working memory , unlike lateralized alpha oscillations. Journal of Cognitive Neuroscience, 13(11), 1689–1698. https://doi.org/10.1162/jocn_a_01446 Wianda, E., & Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain and Behavior, 9(4), 1–21. https://doi.org/10.1002/brb3.1263 Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864–871. https://doi.org/10.1038/nn.4546 Wolff, M. J., Jochim, J., Akyürek, E. G., Buschman, T. J., & Stokes, M. G. (2020). Drifting codes within a stable coding scheme for working memory. PLOS Biology, 18(3), 1–19. https://doi.org/10.1371/journal.pbio.3000625 Won, B. Y., Venkatesh, A., Witkowski, P. P., Banh, T., & Geng, J. J. (2022). Memory precision for salient distractors decreases with learned suppression. Psychonomic Bulletin & Review, 29(1), 169–181. https://doi.org/10.3758/s13423-021-01968-z Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14(4/8), 808–830. https://doi.org/10.1080/13506280500197397 Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 20(6), 1–6. https://doi.org/10.1523/jneurosci.20-06-j0002.2000 Zhang, H., Xuan, Y., Fu, X., & Pylyshyn, Z. W. (2010). Do objects in working memory compete with objects in perception. Visual Cognition, 18(4), 617–640. https://doi.org/10.1080/13506280903211142