Contrail minimization through altitude diversions: A feasibility study leveraging global data
Tài liệu tham khảo
Agarwal, 2022, Reanalysis-driven simulations may overestimate persistent contrail formation by 100-250%, Environ. Res. Lett., 17, 10.1088/1748-9326/ac38d9
Avila, D., Sherry, L., 2019. A contrail inventory of U.S. airspace (2015). In: Proceedings IEEE Integrated Communications, Navigation and Surveillance (I-CNS) Conference 2019, Vol. 9.
Avila, 2019, Reducing global warming by airline contrail avoidance: A case study of annual benefits for the contiguous united states, Transp. Res. Interdiscipl. Perspect., 2, 10.1016/j.trip.2019.100033
Baneshi, 2023, Conflict assessment and resolution of climate-optimal aircraft trajectories at network scale, Transp. Res. Part D: Transp. Environ., 115, 10.1016/j.trd.2022.103592
Buehler, 2003, The impact of temperature errors on perceived humidity supersaturation, Geophys. Res. Lett., 30, 10.1029/2003GL017691
Cappaert, 2020, The spire small satellite network, 1
Corti, 2009, A simple model for cloud radiative forcing, Atmos. Chem. Phys., 9, 5751, 10.5194/acp-9-5751-2009
Dirksen, 2014, Reference quality upper-air measurements: Gruan data processing for the vaisala rs92 radiosonde, Atmos. Meas. Tech., 7, 4463, 10.5194/amt-7-4463-2014
Durre, 2021, Overview of the integrated global radiosonde archive, Atmos. Environ., 244
Durre, 2018, Enhancing the data coverage in the integrated global radiosonde archive, J. Atmos. Ocean. Technol., 35, 10.1175/JTECH-D-17-0223.1
Ferris, 2007, The formation and forecasting of condensation trails behind modern aircraft, Meteorol. Appl., 3
Gao, 2013
Grewe, 2017, Mitigating the climate impact from aviation: Achievements and results of the dlr wecare project, Aerospace, 4
Hoinka, 1993, North atlantic air traffic within the lower stratosphere: Cruising times and corresponding emissions, J. Geophys. Res.: Atmos., 98, 23113, 10.1029/93JD02262
Karcher, 2018, Formation and radiative forcing of contrail cirrus, Nat. Commun., 9, 10.1038/s41467-018-04068-0
Lee, 2021, The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmos. Environ., 244, 10.1016/j.atmosenv.2020.117834
Lee, 2010, Transport impacts on atmosphere and climate: Aviation, Atmos. Environ., 44, 4678, 10.1016/j.atmosenv.2009.06.005
Meyer, 2007, Contrail observations over southern and eastern asia in noaa/avhrr data and comparisons to contrail simulations in a gcm, Int. J. Remote Sens., 28, 2049, 10.1080/01431160600641707
Miloshevich, 2009, Accuracy assessment and correction of vaisala rs92 radiosonde water vapor measurements, J. Geophys. Res.: Atmos., 114, 10.1029/2008JD011565
Moradi, 2010, Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes, J. Geophys. Res.: Atmos., 115, 10.1029/2010JD013962
Organization, 2016, Doc 4444: Procedures for air navigation, Air Traffic Manag., 16
Ramaswamy, 2001
Roosenbrand, 2022
Rosenow, 2019, Individual condensation trails in aircraft trajectory optimization, Sustainability, 11, 10.3390/su11216082
Sanz-Morère I. Eastham, 2021, Impacts of multi-layer overlap on contrail radiative forcing, Atmos. Chem. Phys., 21, 1649, 10.5194/acp-21-1649-2021
Sanz-Morère I. Eastham, 2020, Reducing uncertainty in contrail radiative forcing resulting from uncertainty in ice crystal properties, Environ. Sci. Technol. Lett., 7, 371, 10.1021/acs.estlett.0c00150
Sausen, 2023, Can we successfully avoid persistent contrails by small altitude adjustments of flights in the real world?, Meteorol. Z., 10.1127/metz/2023/1157
Schumann, 1996, On conditions for contrial formation from aircraft exhausts, Meteorol. Z., 4-23
Schumann, 2005, Formation, properties and climatic effects of contrails, Physique, 6, 549, 10.1016/j.crhy.2005.05.002
Schumann, 2011, 3376
Service, 1981
Simorgh, 2023, Robust 4d climate-optimal flight planning in structured airspace using parallelized simulation on gpus: Roost v1.0, Geosci. Model Dev., 16, 3723, 10.5194/gmd-16-3723-2023
Simorgh, 2022, A comprehensive survey on climate optimal aircraft trajectory planning, Aerospace, 9, 10.3390/aerospace9030146
Soden, 1996, An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor, J. Clim., 9, 1235, 10.1175/1520-0442(1996)009<1235:AAOSAR>2.0.CO;2
Sonntag, 1994, Advancements in the field of hygrometry, Meteorol. Z., 3
Sridhar, B., Chen, N., Ng, H., 2010. Fuel efficient strategies for reducing contrail formations in United States airspace. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings.
Sridhar, B., Ng, H., Linke, F., Chen, N., 2014. Benefits analysis of wind-optimal operations for trans-atlantic flights. In: 14th AIAA Aviation Technology, Integration, and Operations Conference.
Strohmeier, 2021, Crowdsourced air traffic data from the opensky network 2019–2020, J. Air Transp. Manag., 94
Stuber, 2006, The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing, Nature, 441, 864, 10.1038/nature04877
Sun, 2020, Openap: An open-source aircraft performance model for air transportation studies and simulations, Aerospace, 7, 10.3390/aerospace7080104
Teoh, 2022, Aviation contrail climate effects in the North Atlantic from 2016 to 2021, Atmos. Chem. Phys., 22, 10.5194/acp-22-10919-2022
Trenberth, 2009, Earth’s global energy budget, Bulletin of the american meteorological society, 90, 311, 10.1175/2008BAMS2634.1