Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem

Luc Jaulin1, Didier Henrion2
1Laboratoire l’Ingénierie des Systèmes Automatisés, Université d’Angers, France
2LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adjiman, C., Dallwig, S., Floudas, C., and Neumaier, A.: A Global Optimization Method, ?BB, for General Twice-Differentiable Constrained NLPs ? I Theoretical Advances, Computers and Chemical Engineering 22 (1998), pp. 1137?1158.

Ben-Tal, A. and Nemirovskii, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2001.

Bliek, C., Spellucci, P., Vincente, L., Neumaier, A., Granvilliers, L., Huens, E., Hentenryck, P. V., Sam-Haroud, D., and Faltings, B.: Algorithms for Solving Nonlinear Constrained and Optimisation Problems: State of the Art, Progress report of the COCONUT project, 2001, http://www.mat.univie.ac.at/~neum/glopt/coconut/cocbib.html.

Boyd, S. and Vanbenberghe, L.: Convex Optimization, Lecture Notes at Stanford University and University of California at Los Angeles, 2003, http://www.stanford.edu/~boyd.

Davey, B. A. and Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, 2002.

Gahinet, P. and Nemirovskii, A.: LMI Lab: A Package for Manipulating and Solving LMIs, INRIA Rocquencourt, France, 1993.

Gahinet, P., Nemirovskii, A., Laub, A. J., and Chilali, M.: The LMI Control Toolbox for Use with Matlab, The MathWorks, Natick, 1995.

Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.

Jansson, C.: A Rigorous Lower Bound for the Optimal Value of Convex Optimization Problems, Journal of Global Optimization 28 (2004), pp. 121?137.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001.

Karmarkar, M.: A New Polynomial-Time Algorithm for Linear Programming, Combinatorica 4 (1984), pp. 373?395.

L�fberg, J.: YALMIP, Yet Another LMI Parser, University of Link�ping, Sweden, 2001, http://www.control.isy.liu.se/~johanl.

Nesterov, Y. and Nemirovskii, A.: Interior-Point Polynomial Methods in Convex Programming. SIAM, Philadelphia, 1994.

Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

Rohn, J.: An Algorithm for Checking Stability of Symmetric Interval Matrices, IEEE Trans. Autom. Control 41 (1) (1996), pp. 133?136.

Sam-Haroud, D.: Constraint Consistency Techniques for Continuous Domains, PhD dissertation 1423, Swiss Federal Institute of Technology in Lausanne, 1995.

Scherer, C. and Weiland, S.: Course on LMIs in Control, Lecture Notes at Delft University of Technology and Eindhoven University of Technology, 2002. http://www.cs.ele.tue.nl/SWeiland/lmi.htm.

Sturm, J. F.: Using SeDuMi 1.02, a Matlab Toolbox for Optimization over Symmetric Cones, Optimization Methods and Software 11?12 (1999), pp. 625?653, http://fewcal.kub.nl/sturm.

van Hentenryck, P., Michel, L., and Deville, Y.: Numerica?A Modelling Language for Global Optimization, MIT Press, Cambridge, Massachusetts, 1997.

Vandenberghe, L. and Boyd, S.: Semidefinite Programming, SIAM Review 38 (1) (1996), pp. 49?95.

VanEmden, M.: Algorithmic Power from Declarative Use of Redundant Constraints, Constraints 4 (4) (1999), pp. 363?381.