Continuum limit of 2D fractional nonlinear Schrödinger equation

Journal of Evolution Equations - Tập 23 Số 2 - 2023
Brian Choi1, Alejandro B. Aceves1
1Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA

Tóm tắt

AbstractWe prove that the solutions to the discrete nonlinear Schrödinger equation with non-local algebraically decaying coupling converge strongly in $$L^2({\mathbb {R}}^2)$$ L 2 ( R 2 ) to those of the continuum fractional nonlinear Schrödinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit computation of the leading term of the oscillatory integral asymptotics is used to show that the best constants of a family of dispersive estimates blow up as the non-locality parameter $$\alpha \in (1,2)$$ α ( 1 , 2 ) approaches the boundaries.

Từ khóa


Tài liệu tham khảo

V. Borovyk and M. Goldberg. The klein–gordon equation on $${\mathbb{Z}}^2$$ and the quantum harmonic lattice. Journal de Mathématiques Pures et Appliquées, 107(6):667–696, 2017.

T. Boulenger, D. Himmelsbach, and E. Lenzmann. Blowup for fractional nls. Journal of Functional Analysis, 271(9):2569–2603, 2016.

Y. Cho, T. Ozawa, and S. Xia. Remarks on some dispersive estimates. Communications on Pure & Applied Analysis, 10(4):1121, 2011.

B. Choi and A. Aceves. Well-posedness of the mixed-fractional nonlinear schrödinger equation on $${\mathbb{R}}^2$$. Partial Differential Equations in Applied Mathematics, pp. 100406, 2022.

J.-C. Cuenin and I. A. Ikromov. Sharp time decay estimates for the discrete klein–gordon equation. Nonlinearity, 34(11):7938, 2021.

V. D. Dinh. Blow-up criteria for fractional nonlinear schrödinger equation. arXiv preprint arXiv:1808.07368, 2018.

R. Grande. Continuum limit for discrete nls with memory effect. arXiv preprint arXiv:1910.05681, 2019.

M. Greenblatt. The asymptotic behavior of degenerate oscillatory integrals in two dimensions. Journal of Functional Analysis, 257(6):1759–1798, 2009.

M. Greenblatt. Stability of oscillatory integral asymptotics in two dimensions. Journal of Geometric Analysis, 24(1):417–444, 2014.

B. J. Hocking, H. S. Ansell, R. D. Kamien, and T. Machon. The topological origin of the peierls–nabarro barrier. Proceedings of the Royal Society A, 478(2258):20210725, 2022.

Y. Hong, C. Kwak, S. Nakamura, and C. Yang. Finite difference scheme for two-dimensional periodic nonlinear schrödinger equations. Journal of Evolution Equations, 21:391–418, 2021.

Y. Hong, C. Kwak, and C. Yang. On the continuum limit for the discrete nonlinear schrödinger equation on a large finite cubic lattice. arXiv preprint arXiv:2106.13417, 2021.

Y. Hong, C. Kwak, and C. Yang. On the korteweg–de vries limit for the fermi–pasta–ulam system. Archive for Rational Mechanics and Analysis, 240(2):1091–1145, 2021.

Y. Hong and Y. Sire. On fractional schrödinger equations in sobolev spaces. Communications on Pure & Applied Analysis, 14(6):2265–2282, 2015.

Y. Hong and C. Yang. Uniform strichartz estimates on the lattice. arXiv preprint arXiv:1806.07093, 2018.

Y. Hong and C. Yang. Strong convergence for discrete nonlinear schrödinger equations in the continuum limit. SIAM Journal on Mathematical Analysis, 51(2):1297–1320, 2019.

L. I. Ignat and E. Zuazua. Dispersive properties of a viscous numerical scheme for the schrödinger equation. Comptes Rendus Mathematique, 340(7):529–534, 2005.

L. I. Ignat and E. Zuazua. A two-grid approximation scheme for nonlinear schrödinger equations: dispersive properties and convergence. Comptes Rendus Mathematique, 341(6):381–386, 2005.

L. I. Ignat and E. Zuazua. Numerical dispersive schemes for the nonlinear schrödinger equation. SIAM journal on numerical analysis, 47(2):1366–1390, 2009.

L. I. Ignat and E. Zuazua. Convergence rates for dispersive approximation schemes to nonlinear schrödinger equations. Journal de mathématiques pures et appliquées, 98(5):479–517, 2012.

I. A. Ikromov and D. Müller. Uniform estimates for the fourier transform of surface carried measures in $${\mathbb{R}}^3$$ and an application to fourier restriction. Journal of Fourier Analysis and Applications, 17(6):1292–1332, 2011.

M. Jenkinson and M. I. Weinstein. Discrete solitary waves in systems with nonlocal interactions and the peierls-nabarro barrier. Communications in Mathematical Physics, 351:45–94, 2017.

V. Karpushkin. A theorem concerning uniform estimates of oscillatory integrals when the phase is a function of two variables. Journal of Soviet Mathematics, 35(6):2809–2826, 1986.

M. Keel and T. Tao. Endpoint strichartz estimates. American Journal of Mathematics, 120(5):955–980, 1998.

K. Kirkpatrick, E. Lenzmann, and G. Staffilani. On the continuum limit for discrete nls with long-range lattice interactions. Commun. Math. Phys., 317:563—591, 2013.

Y. S. Kivshar and D. K. Campbell. Peierls-nabarro potential barrier for highly localized nonlinear modes. Phys. Rev. E, 48:3077–3081, Oct 1993.

P. Schultz. The wave equation on the lattice in two and three dimensions. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 51(6):663–695, 1998.

A. Stefanov and P. G. Kevrekidis. Asymptotic behaviour of small solutions for the discrete nonlinear schrödinger and klein–gordon equations. Nonlinearity, 18(4):1841, 2005.

E. M. Stein and T. S. Murphy. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 3. Princeton University Press, 1993.

A. N. Varchenko. Newton polyhedra and estimation of oscillating integrals. Functional analysis and its applications, 10(3):175–196, 1976.

E. Zuazua and L. I. Ignat. Convergence of a two-grid algorithm for the control of the wave equation. Journal of the European Mathematical Society, 11(2):351–391, 2009.