Continuous tenor extension of affine LIBOR models with multiple curves and applications to XVA

Antonis Papapantoleon1, Robert Wardenga2
1Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
2Institut für Mathematische Stochastik, TU Dresden, Dresden, 01062, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beveridge, C, Joshi, M: Interpolation schemes in the displaced-diffusion LIBOR market model. SIAM. J. Finan. Math. 3, 593–604 (2012).

Bichuch, M, Capponi, A, Sturm, S: Arbitrage-free XVA. Math.Finan. (2016). https://arxiv.org/abs/1608.02690.

Björk, T: Arbitrage Theory in Continuous Time. 3rd edition. Oxford University Press, Chichester (2009).

Brigo, D, Morini, M, Pallavicini, A: Counterparty Credit Risk, Collateral and Funding: with Pricing Cases for all Asset Classes. Wiley (2013).

Crépey, S: Bilateral Counterparty risk under funding constraints — Part I: Pricing. Math. Finan. 25, 1–22 (2015a).

Crépey, S: Bilateral Counterparty risk under funding constraints — Part II: CVA. Math. Finan. 25, 23–50 (2015b).

Crépey, S, Bielecki, TR: Counterparty Risk and Funding: A Tale of two Puzzles. Chapman & Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton (2014). With an introductory dialogue by Damiano Brigo.

Crépey, S, Grbac, Z, Nguyen, H-N: A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155–190 (2012).

Crépey, S, Gerboud, R, Grbac, Z, Ngor, N: Counterparty risk and funding: The four wings of the TVA. Int. J. Theor. Appl. Financ. 16(1350006) (2013).

Crépey, S, Grbac, Z, Ngor, N, Skovmand, D: A Lévy HJM multiple-curve model with application to CVA computation. Quant. Financ. 15, 401–419 (2015).

Cuchiero, C, Fontana, C, Gnoatto, A: Affine multiple yield curve models. Preprint. arXiv:1603.00527 (2016).

Duffie, D, Filipović, D, Schachermayer, W: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003).

Filipović, D: Time-inhomogeneous affine processes. Stoch. Process. Appl. 115, 639–659 (2005).

Glau, K, Grbac, Z, Papapantoleon, A: A unified view of LIBOR models. In: Kallsen, J, Papapantoleon, A (eds.)Advanced Modelling in Mathematical Finance – In Honour of Ernst Eberlein, pp. 423–452. Springer, Cham (2016).

Grbac, Z, Runggaldier, WJ: Interest Rate Modeling: Post-Crisis Challenges and Approaches. Springer, Cham (2015).

Grbac, Z, Papapantoleon, A, Schoenmakers, J, Skovmand, D: Affine LIBOR models with multiple curves: theory, examples and calibration. SIAM. J. Financ. Math. 6, 984–1025 (2015).

Jacod, J, Shiryaev, AN: Limit Theorems for Stochastic Processes. 2nd edition. Springer, Berlin Heidelberg (2003).

Keller-Ressel, M: Affine Processes: Theory and Applications to Finance. PhD thesis, TU Vienna (2008).

Keller-Ressel, M: Affine LIBOR models with continuous tenor (2009). Unpublished manuscript.

Keller-Ressel, M, Papapantoleon, A, Teichmann, J: The affine LIBOR models. Math. Financ. 23, 627–658 (2013).

Mercurio, F: Interest rates and the credit crunch: New formulas and market models. Preprint. SSRN/1332205 (2009).

Mercurio, F: A LIBOR market model with a stochastic basis. Risk.84–89 (2010).

Musiela, M, Rutkowski, M: Continuous-time term structure models: forward measure approach. Financ. Stoch. 1, 261–291 (1997).

Musiela, M, Rutkowski, M:Martingale Methods in Financial Modelling. 2nd edition. Springer, Berlin Heidelberg (2005).

Papapantoleon, A: Old and new approaches to LIBOR modeling. Stat. Neerlandica. 64, 257–275 (2010).