Continuous tenor extension of affine LIBOR models with multiple curves and applications to XVA
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beveridge, C, Joshi, M: Interpolation schemes in the displaced-diffusion LIBOR market model. SIAM. J. Finan. Math. 3, 593–604 (2012).
Bichuch, M, Capponi, A, Sturm, S: Arbitrage-free XVA. Math.Finan. (2016). https://arxiv.org/abs/1608.02690.
Björk, T: Arbitrage Theory in Continuous Time. 3rd edition. Oxford University Press, Chichester (2009).
Brigo, D, Morini, M, Pallavicini, A: Counterparty Credit Risk, Collateral and Funding: with Pricing Cases for all Asset Classes. Wiley (2013).
Crépey, S: Bilateral Counterparty risk under funding constraints — Part I: Pricing. Math. Finan. 25, 1–22 (2015a).
Crépey, S: Bilateral Counterparty risk under funding constraints — Part II: CVA. Math. Finan. 25, 23–50 (2015b).
Crépey, S, Bielecki, TR: Counterparty Risk and Funding: A Tale of two Puzzles. Chapman & Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton (2014). With an introductory dialogue by Damiano Brigo.
Crépey, S, Grbac, Z, Nguyen, H-N: A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155–190 (2012).
Crépey, S, Gerboud, R, Grbac, Z, Ngor, N: Counterparty risk and funding: The four wings of the TVA. Int. J. Theor. Appl. Financ. 16(1350006) (2013).
Crépey, S, Grbac, Z, Ngor, N, Skovmand, D: A Lévy HJM multiple-curve model with application to CVA computation. Quant. Financ. 15, 401–419 (2015).
Cuchiero, C, Fontana, C, Gnoatto, A: Affine multiple yield curve models. Preprint. arXiv:1603.00527 (2016).
Duffie, D, Filipović, D, Schachermayer, W: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003).
Glau, K, Grbac, Z, Papapantoleon, A: A unified view of LIBOR models. In: Kallsen, J, Papapantoleon, A (eds.)Advanced Modelling in Mathematical Finance – In Honour of Ernst Eberlein, pp. 423–452. Springer, Cham (2016).
Grbac, Z, Runggaldier, WJ: Interest Rate Modeling: Post-Crisis Challenges and Approaches. Springer, Cham (2015).
Grbac, Z, Papapantoleon, A, Schoenmakers, J, Skovmand, D: Affine LIBOR models with multiple curves: theory, examples and calibration. SIAM. J. Financ. Math. 6, 984–1025 (2015).
Jacod, J, Shiryaev, AN: Limit Theorems for Stochastic Processes. 2nd edition. Springer, Berlin Heidelberg (2003).
Keller-Ressel, M: Affine Processes: Theory and Applications to Finance. PhD thesis, TU Vienna (2008).
Keller-Ressel, M: Affine LIBOR models with continuous tenor (2009). Unpublished manuscript.
Keller-Ressel, M, Papapantoleon, A, Teichmann, J: The affine LIBOR models. Math. Financ. 23, 627–658 (2013).
Mercurio, F: Interest rates and the credit crunch: New formulas and market models. Preprint. SSRN/1332205 (2009).
Musiela, M, Rutkowski, M: Continuous-time term structure models: forward measure approach. Financ. Stoch. 1, 261–291 (1997).
Musiela, M, Rutkowski, M:Martingale Methods in Financial Modelling. 2nd edition. Springer, Berlin Heidelberg (2005).