Continuous orthosymmetric multilinear maps and homogeneous polynomials on Riesz spaces

The Journal of Analysis - Tập 28 - Trang 1127-1141 - 2020
Elmiloud Chil1, Abderraouf Dorai2,3
1Institut préparatoire aux études d’ingénieurs de Tunis, Tunis, Tunisia
2L.A.T.A.O, Faculty of Sciences of Tunis, Tunis-El Manar University, Tunis, Tunisia
3Abderraouf Dorai Institut préparatoire aux études d’ingénieurs El Manar, Tunis, Tunisia

Tóm tắt

We show that any continuous orthosymmetric multilinear map from an Archimedean Riesz space into a Hausdorff topological vector space is symmetric. Then, we establish a linear representation for continuous orthogonally additive homogeneous polynomials. This representation will be used to introduce and describe a new class of homogeneous polynomials, namely that of polyorthomorphisms. In particular, we prove that, for a Riesz space E and a natural number $$n\ge 2$$ , the space $${{\mathcal{P}}}_{orth}(^nE)$$ of all polyorthomorphisms of degree n is a Riesz space.

Tài liệu tham khảo

Aliprantis, C.D., and O. Burkinshaw. 2006. Positive operators. Dordrecht: Springer. Ben Amor, F. 2010. On orthosymmetric bilinear maps. Positivity 14: 123–134. Ben Amor, F. 2015. Orthogonally additive homogenous polynomials on vector lattices. Communications in Algebra 43(3): 1118–1134. Boulabiar, K. 2003. On products in lattice-ordered algebras. Journal of the Australian Mathematical Society 75: 23–40. Bouroukba, H., E. Chil, and M. Mokaddem. 2015. Orthosymmetric bilinear map on Riesz spaces. Commentationes Mathematicae Universitatis Carolinae 56(3): 307–317. Buskes, G., and A.G. Kusraev. 2007. Representation and extension of orthoregular bilinear operators. Vladikavkaz Mathematical Journal 9: 16–29. Buskes, G., and A. van Rooij. 2003. Bounded variation and tensor products of Banach lattices, Positivity and its applications (Nijmegen, 2001). Positivity 7(1–2): 47–59. Buskes, G., and A. van Rooij. 2001. Squares of Riesz spaces. Rocky Mountain Journal of Mathematics 31(1): 45–56. Buskes, G., and A. van Rooij. 2000. Almost f-algebras: Commutativity and the Cauchy-Schwarz inequality. Positivity and its applications, Positivity 4 (3): 227–231. Buskes, G., and A. van Rooij. 1989. Small Riesz spaces. Cambridge Philos 105: 523–536. Buskes, G., R. Page Jr., and R. Yilmaz. 2009. A note on bi-orthomorphisms. Operator Theory: Advances and Applications 201: 99–107. Chil, E. 2011. Order bounded orthosymmetric bilinear operator. Czechoslovak Mathematical Journal 61 (4): 873–880. Kusraev, A.G. 2005. On the representation of orthosymmetric bilinear operators in vector lattices. Vladikavkaz Mathematical Journal 7 (4): 30–34. [in Russian]. Kusreav, A.G. 2008. On some properties of orthosymmetric bilinear operators. Vladikavkaz Mathematical Journal 10 (3): 29–33. Kusraev, A.G. 2006. When all separately band preserving bilinear operators are symmetric? Vladikavkaz Mathematical Journal 9 (2): 22–25. Kusraev, A.G., and S.N. Tabuev. 2004. On disjointness preserving bilinear operators [in Russian]. Vladikavkaz Mathematical Journal 6 (1): 58–70. Kusraeva, Z.A. 2011. On representation of orthogonally additive homogeneous polynomials. Siberian Mathematical Journal 52 (2): 315–325. Kusraeva, Z.A. 2016. Characterization and multiplicative representation of orthogonally additive homogeneous Polynomials. Vladikavkaz Mathematical Journal 18 (1): 51–62. Luxemburg, W.A., and A.C. Zaanen. 1971. Riesz Spaces I. Amsterdam: North-Holland. Meyer-Nieberg, P. 1991. Banach lattices. Berlin: Springer. Natanson, I.P. 1960. Theory of functions of a real variable, vol. II. New-York: Frederick Ungar Publishing Co. Schaefer, H.H. 1974. Banach lattices and Positive Operators, Grundlehren Math. Wiss., vol. 215, Springer, Berlin, 1974. Yilmaz, R., and K. Rowlands. 2006. On orthomorphisms, quasi-orthomorphisms and quasi-multipliers. Journal of Mathematical Analysis and Applications 313: 120–131.