Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO 2 with a mixed microbial community

Journal of CO2 Utilization - Tập 20 - Trang 141-149 - 2017
Jan Arends1, Sunil A. Patil1, Hugo Roume1, Korneel Rabaey1
1Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Otto, 2015, Closing the loop: captured CO2 as a feedstock in the chemical industry, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E

Alissandratos, 2015, Biocatalysis for the application of CO2 as a chemical feedstock, Beilstein J. Org. Chem., 11, 2370, 10.3762/bjoc.11.259

Rabaey, 2010, Microbial electrosynthesis-revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422

Desloover, 2012, Operational and technical considerations for microbial electrosynthesis, Biochem. Soc. Trans., 40, 1233, 10.1042/BST20120111

Nevin, 2011, Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms, Appl. Environ. Microbiol., 77, 2882, 10.1128/AEM.02642-10

Nevin, 2010, Microbial Electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, mBio, 1, e00103, 10.1128/mBio.00103-10

Marshall, 2012, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microbiol., 78, 8412, 10.1128/AEM.02401-12

Gong, 2013, Sulfide-driven microbial electrosynthesis, Environ. Sci. Technol., 47, 568, 10.1021/es303837j

LaBelle, 2014, Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome, PLoS One, 9, 1, 10.1371/journal.pone.0109935

Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F

Jourdin, 2015, High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide, Environ. Sci. Technol., 49, 13566, 10.1021/acs.est.5b03821

Jourdin, 2016, Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide, ChemElectroChem, 3, 581, 10.1002/celc.201500530

Bajracharya, 2015, Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode, Bioresour. Technol., 195, 14, 10.1016/j.biortech.2015.05.081

Faraghiparapari, 2016, Production of organics from CO2 by microbial electrosynthesis (mes) at high temperature, J. Chem. Technol. Biotechnol.

Chen, 2016, Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine, J. Mater. Chem. A, 4, 8395, 10.1039/C6TA02036D

Liu, 2016, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 352, 1210, 10.1126/science.aaf5039

Ganigué, 2015, Microbial electrosynthesis of butyrate from carbon dioxide, Chem. Commun., 51, 3235, 10.1039/C4CC10121A

May, 2016, The bioelectrosynthesis of acetate, Curr. Opin. Biotechnol., 42, 225, 10.1016/j.copbio.2016.09.004

Batlle-Vilanova, 2015, Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture, J. Chem. Technol. Biotechnol., 91, 921, 10.1002/jctb.4657

Mohanakrishna, 2016, Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis, J. CO2 Util., 15, 57, 10.1016/j.jcou.2016.03.003

Jourdin, 2016, Bringing high-rate, co2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions, Environ. Sci. Technol., 50, 1982, 10.1021/acs.est.5b04431

Liew, 2016, Gas fermentation −a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks, Front. Microbiol., 7, 10.3389/fmicb.2016.00694

Patil, 2015, Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol., 49, 8833, 10.1021/es506149d

Arends, 2014, Enhanced disinfection of wastewater by combining wetland treatment with bioelectrochemical H2O2 production, Bioresour. Technol., 155, 352, 10.1016/j.biortech.2013.12.058

Gildemyn, 2015, Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis, Environ. Sci. Technol. Lett., 2, 325, 10.1021/acs.estlett.5b00212

Vilchez-Vargas, 2013, Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system, Environ. Microbiol., 15, 1016, 10.1111/j.1462-2920.2012.02752.x

Arends, 2014, Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell, Appl. Microbiol. Biotechnol., 98, 3205, 10.1007/s00253-013-5328-5

Stewardson, 2015, Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota, Clin. Microbiol. Infect., 21, 344, 10.1016/j.cmi.2014.11.016

Andersen, 2015, Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation, Biotechnol. Biofuels., 8, 221, 10.1186/s13068-015-0396-7

Patil, 2015, A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33, 736, 10.1016/j.biotechadv.2015.03.002

Marshall, 2013, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol., 47, 6023, 10.1021/es400341b

Ammam, 2016, Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata, Biotechnol. Biofuels., 9, 163, 10.1186/s13068-016-0576-0

Liao, 2015, Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum, Proc. Natl. Acad. Sci., 112, 8505, 10.1073/pnas.1423143112

Ganigué, 2016, Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00702

Schuchmann, 2014, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol., 12, 809, 10.1038/nrmicro3365

Torella, 2015, Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system, Proc. Natl. Acad. Sci. U. S. A., 112, 2337, 10.1073/pnas.1424872112

Sharma, 2013, Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone, Chem. Commun., 49, 6495, 10.1039/c3cc42570c

Bajracharya, 2016, Long-term operation of bioelectrochemical CO2 reduction to multi-carbon chemicals with a mixed culture avoiding methanogenesis, Bioelectrochemistry, 113, 26, 10.1016/j.bioelechem.2016.09.001

Raes, 2016, Continuous Long-Term Bioelectrochemical Chain Elongation to Butyrate, ChemElectroChem, 4, 386, 10.1002/celc.201600587

Balch, 1977, Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria, Int. J. Syst. Bacteriol., 27, 355, 10.1099/00207713-27-4-355

Croese, 2011, Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell, Appl. Microbiol. Biotechnol., 92, 1083, 10.1007/s00253-011-3583-x

Aulenta, 2012, Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H2-producing capability of desulfovibrio sp, ChemSusChem, 5, 1080, 10.1002/cssc.201100720

Marshall, 2016

Her, 2013, Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of South Korea, J. Microbiol., 51, 268, 10.1007/s12275-013-3126-5

Kanno, 2013, Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance, Appl. Environ. Microbiol., 79, 6998, 10.1128/AEM.02900-13

Agler, 2011, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol., 29, 70, 10.1016/j.tibtech.2010.11.006

Seedorf, 2008, The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features, Proc. Natl. Acad. Sci. U. S. A., 105, 2128, 10.1073/pnas.0711093105

da Mota, 2016, Whole-genome sequence of Rummeliibacillus stabekisii strain pp9 isolated from antarctic soil, Genome Announc., 4, e00416, 10.1128/genomeA.00416-16

Lee, 2012, Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation, Appl. Environ. Microbiol., 78, 1416, 10.1128/AEM.06382-11

Ramachandriya, 2011, Reduction of acetone to isopropanol using producer gas fermenting microbes, Biotechnol. Bioeng., 108, 2330, 10.1002/bit.23203

Ramachandriya, 2010, Heat shocking of Clostridium strain P11 to promote sporulation and ethanol production, Biol. Eng., 2, 115, 10.13031/2013.32721

Korkhin, 1998, NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii, J. Mol. Biol., 278, 967, 10.1006/jmbi.1998.1750

Takii, 2007, Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with Casamino acids, Int. J. Syst. Evol. Microbiol., 57, 2320, 10.1099/ijs.0.64882-0

Ismaiel, 1993, Purification and characterization of a primary-secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii, J. Bacteriol., 175, 5097, 10.1128/jb.175.16.5097-5105.1993