Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO 2 with a mixed microbial community
Tóm tắt
Từ khóa
Tài liệu tham khảo
Otto, 2015, Closing the loop: captured CO2 as a feedstock in the chemical industry, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E
Alissandratos, 2015, Biocatalysis for the application of CO2 as a chemical feedstock, Beilstein J. Org. Chem., 11, 2370, 10.3762/bjoc.11.259
Rabaey, 2010, Microbial electrosynthesis-revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422
Desloover, 2012, Operational and technical considerations for microbial electrosynthesis, Biochem. Soc. Trans., 40, 1233, 10.1042/BST20120111
Nevin, 2011, Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms, Appl. Environ. Microbiol., 77, 2882, 10.1128/AEM.02642-10
Nevin, 2010, Microbial Electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds, mBio, 1, e00103, 10.1128/mBio.00103-10
Marshall, 2012, Electrosynthesis of commodity chemicals by an autotrophic microbial community, Appl. Environ. Microbiol., 78, 8412, 10.1128/AEM.02401-12
Gong, 2013, Sulfide-driven microbial electrosynthesis, Environ. Sci. Technol., 47, 568, 10.1021/es303837j
LaBelle, 2014, Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome, PLoS One, 9, 1, 10.1371/journal.pone.0109935
Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F
Jourdin, 2015, High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide, Environ. Sci. Technol., 49, 13566, 10.1021/acs.est.5b03821
Jourdin, 2016, Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide, ChemElectroChem, 3, 581, 10.1002/celc.201500530
Bajracharya, 2015, Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode, Bioresour. Technol., 195, 14, 10.1016/j.biortech.2015.05.081
Faraghiparapari, 2016, Production of organics from CO2 by microbial electrosynthesis (mes) at high temperature, J. Chem. Technol. Biotechnol.
Chen, 2016, Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine, J. Mater. Chem. A, 4, 8395, 10.1039/C6TA02036D
Liu, 2016, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 352, 1210, 10.1126/science.aaf5039
Ganigué, 2015, Microbial electrosynthesis of butyrate from carbon dioxide, Chem. Commun., 51, 3235, 10.1039/C4CC10121A
May, 2016, The bioelectrosynthesis of acetate, Curr. Opin. Biotechnol., 42, 225, 10.1016/j.copbio.2016.09.004
Batlle-Vilanova, 2015, Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture, J. Chem. Technol. Biotechnol., 91, 921, 10.1002/jctb.4657
Mohanakrishna, 2016, Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis, J. CO2 Util., 15, 57, 10.1016/j.jcou.2016.03.003
Jourdin, 2016, Bringing high-rate, co2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions, Environ. Sci. Technol., 50, 1982, 10.1021/acs.est.5b04431
Liew, 2016, Gas fermentation −a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks, Front. Microbiol., 7, 10.3389/fmicb.2016.00694
Patil, 2015, Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol., 49, 8833, 10.1021/es506149d
Arends, 2014, Enhanced disinfection of wastewater by combining wetland treatment with bioelectrochemical H2O2 production, Bioresour. Technol., 155, 352, 10.1016/j.biortech.2013.12.058
Gildemyn, 2015, Integrated production, extraction, and concentration of acetic acid from CO2 through microbial electrosynthesis, Environ. Sci. Technol. Lett., 2, 325, 10.1021/acs.estlett.5b00212
Vilchez-Vargas, 2013, Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system, Environ. Microbiol., 15, 1016, 10.1111/j.1462-2920.2012.02752.x
Arends, 2014, Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell, Appl. Microbiol. Biotechnol., 98, 3205, 10.1007/s00253-013-5328-5
Stewardson, 2015, Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota, Clin. Microbiol. Infect., 21, 344, 10.1016/j.cmi.2014.11.016
Andersen, 2015, Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation, Biotechnol. Biofuels., 8, 221, 10.1186/s13068-015-0396-7
Patil, 2015, A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33, 736, 10.1016/j.biotechadv.2015.03.002
Marshall, 2013, Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes, Environ. Sci. Technol., 47, 6023, 10.1021/es400341b
Ammam, 2016, Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata, Biotechnol. Biofuels., 9, 163, 10.1186/s13068-016-0576-0
Liao, 2015, Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum, Proc. Natl. Acad. Sci., 112, 8505, 10.1073/pnas.1423143112
Ganigué, 2016, Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00702
Schuchmann, 2014, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol., 12, 809, 10.1038/nrmicro3365
Torella, 2015, Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system, Proc. Natl. Acad. Sci. U. S. A., 112, 2337, 10.1073/pnas.1424872112
Sharma, 2013, Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone, Chem. Commun., 49, 6495, 10.1039/c3cc42570c
Bajracharya, 2016, Long-term operation of bioelectrochemical CO2 reduction to multi-carbon chemicals with a mixed culture avoiding methanogenesis, Bioelectrochemistry, 113, 26, 10.1016/j.bioelechem.2016.09.001
Raes, 2016, Continuous Long-Term Bioelectrochemical Chain Elongation to Butyrate, ChemElectroChem, 4, 386, 10.1002/celc.201600587
Balch, 1977, Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria, Int. J. Syst. Bacteriol., 27, 355, 10.1099/00207713-27-4-355
Croese, 2011, Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell, Appl. Microbiol. Biotechnol., 92, 1083, 10.1007/s00253-011-3583-x
Aulenta, 2012, Linking bacterial metabolism to graphite cathodes: electrochemical insights into the H2-producing capability of desulfovibrio sp, ChemSusChem, 5, 1080, 10.1002/cssc.201100720
Marshall, 2016
Her, 2013, Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of South Korea, J. Microbiol., 51, 268, 10.1007/s12275-013-3126-5
Kanno, 2013, Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance, Appl. Environ. Microbiol., 79, 6998, 10.1128/AEM.02900-13
Agler, 2011, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol., 29, 70, 10.1016/j.tibtech.2010.11.006
Seedorf, 2008, The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features, Proc. Natl. Acad. Sci. U. S. A., 105, 2128, 10.1073/pnas.0711093105
da Mota, 2016, Whole-genome sequence of Rummeliibacillus stabekisii strain pp9 isolated from antarctic soil, Genome Announc., 4, e00416, 10.1128/genomeA.00416-16
Lee, 2012, Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation, Appl. Environ. Microbiol., 78, 1416, 10.1128/AEM.06382-11
Ramachandriya, 2011, Reduction of acetone to isopropanol using producer gas fermenting microbes, Biotechnol. Bioeng., 108, 2330, 10.1002/bit.23203
Ramachandriya, 2010, Heat shocking of Clostridium strain P11 to promote sporulation and ethanol production, Biol. Eng., 2, 115, 10.13031/2013.32721
Korkhin, 1998, NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii, J. Mol. Biol., 278, 967, 10.1006/jmbi.1998.1750
Takii, 2007, Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with Casamino acids, Int. J. Syst. Evol. Microbiol., 57, 2320, 10.1099/ijs.0.64882-0