Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds

Journal of Flow Chemistry - Tập 9 - Trang 9-12 - 2018
Alexanne Bouchard1, Vanessa Kairouz1, Maxime Manneveau2, Heng-Ying Xiong2, Tatiana Besset2, Xavier Pannecoucke2, Hélène Lebel1
1Department of Chemistry and Continuous Flow Synthesis Laboratory, Université de Montréal, Montréal, Canada
2INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), Normandie Université, Rouen, France

Tóm tắt

A continuous flow process for the synthesis of trifluoromethylthioethers is reported. The palladium-catalyzed C-H trifluoromethylthiolation of amides derived from the 8-aminoquinoline using N-[(trifluoromethyl)thio]phthalimide produced the desired products in moderate to good yields with a residence time of 20 min. In comparison with the batch process, the reaction time was decreased by a factor of 100 to 200, demonstrating the positive effect of continuous flow processes for this type of reaction.

Tài liệu tham khảo

Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993). Nature (London) 366:529–531 Corbet M, De Campo F (2013). Angew Chem Int Ed 52:9896–9898 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M (2018). Chem. Soc. Rev 47:6603–6743 and references therein Rao W-H, Shi B-F (2016). Org Chem Front 3:1028–1047 Yang X, Shan G, Wang L, Rao Y (2016). Tetrahedron Lett. 57:819–836 Petrone DA, Ye J, Lautens M (2016). Chem. Rev. 116:8003–8104 Meanwell NA (2018). J. Med. Chem. 61:5822–5880 Wang J et al (2014). Chem. Rev. 114:2432–2506 Toulgoat F, Alazet S, Billard T (2014). Eur J Org Chem:2415–2428 and references therein Xu X-H, Matsuzaki K, Shibata N (2015). Chem. Rev. 115:731–764 and references therein Barata-Vallejo S, Bonesi S, Postigo A (2016). Org Biomol Chem 14:7150–7182 Chachignon H, Cahard D (2016). Chin. J. Chem. 34:445–454 Hansch C, Leo A, Taft RW (1991). Chem. Rev. 91:165–195 Shao X, Xu C, Lu L, Shen Q (2015). Acc. Chem. Res. 48:1227–1236 Xu C, Shen Q (2014). Org. Lett. 16:2046–2049 Yin W, Wang Z, Huang Y (2014). Adv. Synth. Catal. 356:2998–3006 Yoshida M, Kawai K, Tanaka R, Yoshino T, Matsunaga S (2017). Chem. Commun. 53:5974–5977 Zhao Q, Poisson T, Pannecoucke X, Bouillon JP, Besset T (2017). Org. Lett. 19:5106–5109 Zhao Q, Chen MY, Poisson T, Pannecoucke X, Bouillon JP, Besset T (2018). Eur J Org Chem. https://doi.org/10.1002/ejoc.201801071 Kesavan A, Chaitanya M, Anbarasan P (2018). Eur. J. Org. Chem.:3276–3279 Chen C, Xu X-H, Yang B, Qing F-L (2014). Org. Lett. 16:3372–3375 Guo S, Zhang X, Tang P (2015). Angew. Chem. Int. Ed. 54:4065–4069 Wu H, Xiao Z, Wu J, Guo Y, Xiao J-C, Liu C, Chen Q-Y (2015). Angew. Chem. Int. Ed. 54:4070–4074 Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F (2016). J. Am. Chem. Soc. 138:16200–16203 Xiong H-Y, Besset T, Cahard D, Pannecoucke X (2015). J Org Chem 80:4204–4212 Newman SG, Jensen KF (2013). Green Chem. 15:1456–1472 Gutmann B, Kappe CO (2017). J Flow Chem 7:65–71 Wirth T (2017). Angew Chem Int Ed 56:682–684 Morse PD, Beingessner RL, Jamison TF (2017). Isr J Chem 57:218–227 Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017). Chem. Rev. 117:11796–11893 and references therein Sullivan J. Newman S (2108) in flow chemistry for the synthesis of heterocycles. K. Sharma & E. Van der Eycken, Eds. Springer. https://doi.org/10.1007/7081_2018_18