Dự đoán sống sót theo thời gian liên tục và rời rạc với mạng nơ-ron
Tóm tắt
Do sự phát triển nhanh chóng trong học máy, và đặc biệt là mạng nơ-ron, nhiều phương pháp mới cho dự đoán thời gian sự kiện đã được phát triển trong vài năm qua. Vì mạng nơ-ron là các mô hình tham số, nên việc tích hợp các mô hình sống sót tham số vào khung mạng nơ-ron trở nên đơn giản hơn so với mô hình Cox bán tham số phổ biến. Đặc biệt, các mô hình sống sót theo thời gian rời rạc, hoàn toàn tham số, là những ứng cử viên thú vị để mở rộng bằng mạng nơ-ron. Độ khả năng cho dữ liệu sống sót theo thời gian rời rạc có thể được tham số hóa bởi hàm khối xác suất (PMF) hoặc bởi tỷ lệ nguy hiểm rời rạc, và cả hai cách diễn đạt này đã được sử dụng để phát triển các phương pháp dự đoán thời gian sự kiện dựa trên mạng nơ-ron. Trong bài báo này, chúng tôi xem xét và so sánh những phương pháp này. Quan trọng hơn, chúng tôi chỉ ra cách mà các phương pháp theo thời gian rời rạc có thể được áp dụng như các xấp xỉ cho dữ liệu theo thời gian liên tục. Để làm điều này, chúng tôi giới thiệu hai sơ đồ rời rạc hóa, tương ứng với thời gian cách đều hoặc xác suất sống sót biên cách đều, và hai cách để nội suy các dự đoán theo thời gian rời rạc, tương ứng với các hàm mật độ hằng số đoạn hoặc các tỷ lệ nguy hiểm hằng số đoạn. Thông qua các mô phỏng và nghiên cứu dữ liệu thực, các phương pháp dựa trên tham số hóa tỷ lệ nguy hiểm được phát hiện là hoạt động hơi tốt hơn so với các phương pháp sử dụng tham số hóa PMF. Được truyền cảm hứng từ những điều tra này, chúng tôi cũng đề xuất một phương pháp theo thời gian liên tục bằng cách giả định rằng tỷ lệ nguy hiểm theo thời gian liên tục là hằng số đoạn. Phương pháp này, được gọi là PC-Hazard, được phát hiện là cạnh tranh rất cao với các phương pháp đã đề cập ở trên cũng như các phương pháp khác cho dự đoán sống sót được tìm thấy trong tài liệu.
Từ khóa
Tài liệu tham khảo
Allison PD (1982) Discrete-time methods for the analysis of event histories. Sociol Methodol 13:61–98
Antolini L, Boracchi P, Biganzoli E (2005) A time-dependent discrimination index for survival data. Stat Med 24(24):3927–3944
Brown CC (1975) On the use of indicator variables for studying the time-dependence of parameters in a response-time model. Biometrics 31(4):863–872
Cox DR (1972) Regression models and life-tables. J Roy Stat Soc Ser B (Methodol) 34(2):187–220
Fotso S (2018) Deep neural networks for survival analysis based on a multi-task framework. arXiv preprint arXiv:1801.05512
Friedman M (1982) Piecewise exponential models for survival data with covariates. Ann Stat 10(1):101–113
Gensheimer MF, Narasimhan B (2019) A scalable discrete-time survival model for neural networks. PeerJ 7:e6257
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999) Assessment and comparison of prognostic classification schemes for survival data. Stat Med 18(17–18):2529–2545
Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. J Am Med Assoc 247(18):2543–2546
van Houwelingen H, Putter H (2011) Dynamic prediction in clinical survival analysis, 1st edn. CRC Press, London
Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann Appl Stat 2(3):841–860
Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y (2018) DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 18:24
Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data, 2nd edn. Springer, New York
Kvamme H, Borgan Ø, Scheel I (2019) Time-to-event prediction with neural networks and Cox regression. J Mach Learn Res 20(129):1–30
Lee C, Zame WR, Yoon J, van der Schaar M (2018) DeepHit: a deep learning approach to survival analysis with competing risks. In: Thirty-second AAAI conference on artificial intelligence
Loshchilov I, Hutter F (2019) Decoupled weight decay regularization. In: International Conference on Learning Representations
Luck M, Sylvain T, Cardinal H, Lodi A, Bengio Y (2017) Deep learning for patient-specific kidney graft survival analysis. arXiv preprint arXiv:1705.10245
Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on applications of computer vision (WACV), pp 464–472
Therneau TM (2015) A Package for Survival Analysis in S. https://CRAN.R-project.org/package=survival, version 2.38
Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, Gutman DA, Halani SH, Vega JEV, Brat DJ et al (2017) Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep 7:11707
Yu CN, Greiner R, Lin HC, Baracos V (2011) Learning patient-specific cancer survival distributions as a sequence of dependent regressors. In: Advances in neural information processing systems, vol 24. Curran Associates, Inc., pp 1845–1853