Continuous L-domains in logical form

Annals of Pure and Applied Logic - Tập 172 - Trang 102993 - 2021
Longchun Wang1,2, Qingguo Li1, Xiangnan Zhou1
1School of Mathematics, Hunan University, Changsha 410082, China
2School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

Tài liệu tham khảo

Abramsky, 1987 Abramsky, 1991, Domain theory in logical form, Ann. Pure Appl. Log., 51, 1, 10.1016/0168-0072(91)90065-T Awodey, 2006 Bonsangue, 1999, Toward an infinitary logic of domains: Abramsky logic for transition systems, Inf. Comput., 155, 170, 10.1006/inco.1999.2827 Bonsangue, 2007, Pi-calculus in logical form, 303 Chen, 1997, Stone duality and representation of stable domain, Comput. Math. Appl., 34, 27, 10.1016/S0898-1221(97)00096-5 Chen, 2006, A logical approach to stable domains, Theor. Comput. Sci., 368, 124, 10.1016/j.tcs.2006.09.005 Gierz, 2003 Goubault-Larrecq, 2013 Hájek, 1998 Jung, 1988 Jung, 1999, Multi lingual sequent calculus and coherent spaces, Fundam. Inform., 37, 369, 10.3233/FI-1999-37403 Jung, 2013, Continuous Domain Theory in Logical Form, vol. 7860, 166 Kegelmann, 2002, Continuous Domain Theory in Logical Form, vol. 49, 1 Rounds, 2001, Clausal logic and logic programming in algebraic domains, Inf. Comput., 171, 183, 10.1006/inco.2001.3073 Vickers, 2004, Entailment systems for stably locally compact locales, Theor. Comput. Sci., 316, 259, 10.1016/j.tcs.2004.01.033 Wang, 2020, A representation of proper BC domains based on conjunctive sequent calculi, Math. Struct. Comput. Sci., 30, 1, 10.1017/S096012951900015X Wang, 2020, A logic for Lawson compact algebraic L-domains, Theor. Comput. Sci., 813, 410, 10.1016/j.tcs.2020.01.025