Continuity of the Metric Projection and Local Solar Properties of Sets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alimov, A.R.: Monotone path-connectedness of Chebyshev sets in the space C(Q). Sbornik Math. 197 (9), 1259–1272 (2006). https://doi.org/10.1070/SM2006v197n09ABEH003797
Alimov, A.R.: Convexity of bounded Chebyshev sets in finite-dimensional asymmetrically normed spaces. Izvestiya Saratov Gos. Univ. Nov. Ser. Matem. Mekh. Inform 14(2), 489–497 (2014). https://doi.org/10.18500/1816-9791-2016-16-2-133-137
Alimov, A.R.: Local solarity of suns in linear normed spaces. J. Math. Sci. (N.Y.) 197(4), 447–454 (2014). https://doi.org/10.1007/s10958-014-1726-1
Alimov, A.R.: Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces. Izvestiya: Math. 78(4), 3–19 (2014). https://doi.org/10.1070/IM2014v078n04ABEH002702
Alimov, A.R.: A monotone path-connected set with radially continuous metric projection is a strict sun. Sib. Matem. Zh 57(6), 16–21 (2016). https://doi.org/10.17377/smzh.2016.57.602
Alimov, A.R.: Selections of the metric projection operator and strict solarity of sets with continuous metric projection. Sbornik Math. 208(7), 915–929 (2017). https://doi.org/10.1070/SM8765
Alimov, A.R., Tsar’kov, I.G.: Connectedness and other geometric properties of suns and chebyshev sets. J. Math. Sci. 217 (6), 683–730 (2016). https://doi.org/10.1007/s10958-016-3000-1
Alimov, A.R., Tsar’kov, I.G.: Connectedness and solarity in problems of best and near-best approximation. Russ. Math. Surv. 71(1), 1–77 (2016). https://doi.org/10.1070/RM9698
Amir, D., Deutsch, F.: Suns, moons and quasi-polyhedra. J. Approx. Theory 6, 176–201 (1972). https://doi.org/10.1016/0021-9045(72)90073-1
Blatter, J., Morris, P.D., Wulbert, D.E.: Continuity of the set-valued metric projection. Math. Ann 178, 12–24 (1968). https://doi.org/10.1007/BF01350621
Brosowski, B., Deutsch, F.: Some new continuity concepts for metric projections. Bull. Amer. Math. Soc 6, 974–978 (1972). https://doi.org/10.1090/S0002-9904-1972-13073-8
Brosowski, B., Deutsch, F.: On some geometric properties of suns. J. Approx. Theory 10, 245–267 (1974). https://doi.org/10.1016/0021-9045(74)90122-1
Brosowski, B., Deutsch, F.: Radial continuity of set-valued metric projections. J. Approx. Theory 11, 236–253 (1974). https://doi.org/10.1016/0021-9045(74)90016-1
Flerov, A.: Locally Chebyshev sets on the plane. Math. Notes 97(1), 136–142 (2015). https://doi.org/10.1134/S0001434615010150
Malykhin, Y.V.: Relative widths of Sobolev classes in the uniform and integral metrics. Proc. Steklov Inst. Math 293, 209–215 (2016). https://doi.org/10.1134/S0081543816040155
Repovš, D., Semenov, P.V.: Continuous selections of multivalued mappings. In: Recent Progress in General Topology. III, pp. 711–749. Atlantis Press, Paris (2014)
Tsar’kov, I.G.: Bounded Chebyshev sets in finite-dimensional Banach spaces. Math. Notes 36(1), 530–537 (1984). https://doi.org/10.1007/BF01139554
Tsar’kov, I.G.: Continuity of the metric projection, structural and approximate properties of sets. Math. Notes 47(2), 218–227 (1990). https://doi.org/10.1007/BF01156834
Tsar’kov, I.G.: Bounded Chebyshev sets in finite-dimensional Banach spaces. Izv. Math 80(2), 442–461 (2016). https://doi.org/10.1070/IM8348
Tsar’kov, I.G.: Continuous ε-selection. Sb. Math 207 (2), 267–285 (2016). https://doi.org/10.1070/SM8481
Vlasov, L.P.: Approximative properties of sets in normed linear spaces. Russ. Math. Surveys 28(6), 3–66 (1973). https://doi.org/10.1070/RM1973v028n06ABEH001624