Contextual cueing in co-active visual search: Joint action allows acquisition of task-irrelevant context
Tóm tắt
Repeatedly presenting a target within a stable search array facilitates visual search, an effect termed contextual cueing. Previous solo-performance studies have shown that successful acquisition of contextual memories requires explicit allocation of attentional resources to the task-relevant repeated contexts. By contrast, repeated but task-irrelevant contexts could not be learned when presented together with repeated task-relevant contexts due to a blocking effect. Here we investigated if such blocking of context learning could be diminished in a social context, when the task-irrelevant context is task-relevant for a co-actor in a joint action search mode. We adopted the contextual cueing paradigm and extended this to the co-active search mode. Participants learned a context-cued subset of the search displays (color-defined) in the training phase, and their search performance was tested in the transfer phase, where previously irrelevant and relevant subsets were swapped. The experiments were conducted either in a solo search mode (Experiments 1 and 3) or in a co-active search mode (Experiment 2). Consistent with the classical contextual cueing studies, contextual cueing was observed in the training phase of all three experiments. Importantly, however, in the “swapped” test session, a significant contextual cueing effect was manifested only in the co-active search mode, not in the solo search mode. Our findings suggest that social context may widen the scope of attention, thus facilitating the acquisition of task-irrelevant contexts.
Tài liệu tham khảo
Annac, E., Pointner, M., Khader, P. H., Müller, H. J., Zang, X., & Geyer, T. (2019). Recognition of incidentally learned visual search arrays is supported by fixational eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(12), 2147–2164. https://doi.org/10.1037/xlm0000702
Böckler, A., Knoblich, G., & Sebanz, N. (2012). Effects of a coactor's focus of attention on task performance. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1404. https://doi.org/10.1037/a0027523
Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77–80. https://doi.org/10.1126/science.177.4043.77
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357
Carpenter, M., & Call, J. (2013). How joint is joint attention of apes and human infants? In J. Metcalfe & H. S. Terrace (Eds.), Agency and joint attention (pp. 49–61). New York, NY: Oxford University Press. https://dx.doi.org/10.1093/acprof:oso/9780199988341.003.0003
Chun, M. M., & Jiang, Y. (1998). Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention. Cognitive Psychology, 36(1), 28–71. https://doi.org/10.1006/cogp.1998.0681
Conci, M., & Müller, H. J. (2014). Global scene layout modulates contextual learning in change detection. Frontiers in Psychology, 5, 89. https://doi.org/10.3389/fpsyg.2014.00089
Conci, M., & von Mühlenen, A. (2011). Limitations of perceptual segmentation on contextual cueing in visual search. Visual Cognition, 19(2), 203–233. https://doi.org/10.1080/13506285.2010.518574
Davenport, J. L., & Potter, M. C. (2004). Scene Consistency in Object and Background Perception. Psychological Science, 15(8), 559–564. https://doi.org/10.1111/j.0956-7976.2004.00719.x
Endo, N., & Takeda, Y. (2004). Selective learning of spatial configuration and object identity in visual search. Perception & Psychophysics, 66(2), 293–302. https://doi.org/10.3758/BF03194880
Eskenazi, T., Doerrfeld, A., Logan, G. D., Knoblich, G., & Sebanz, N. (2013). Your words are my words: Effects of acting together on encoding. The Quarterly Journal of Experimental Psychology, 66(5), 1026–1034. https://doi.org/10.1080/17470218.2012.725058
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs. Psychological Science, 26(11), 1740–1750. https://doi.org/10.1177/0956797615597913
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 45–62. https://doi.org/10.3758/s13414-016-1209-1
Geringswald, F., Herbik, A., Hofmüller, W., Hoffmann, M. B., & Pollmann, S. (2015). Visual memory for objects following foveal vision loss. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1471. https://doi.org/10.1037/xlm0000112
Geyer, T., Seitz, W., Zinchenko, A., Müller, H. J., & Conci, M. (2021). Why Are Acquired Search-Guiding Context Memories Resistant to Updating? Frontiers in Psychology, 12, 564. https://doi.org/10.3389/fpsyg.2021.650245
Geyer, T., Shi, Z., & Müller, H. J. (2010). Contextual cueing in multiconjunction visual search is dependent on color-and configuration-based intertrial contingencies. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 515. https://doi.org/10.1037/a0017448
Jiang, Y. V., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology Section A, 54(4), 1105–1124. https://doi.org/10.1080/713756001
Jiang, Y. V., & Leung, A. W. (2005). Implicit learning of ignored visual context. Psychonomic Bulletin & Review, 12(1), 100–106. https://doi.org/10.3758/BF03196353
Jiang, Y. V., Sisk, C. A., & Toh, Y. N. (2019). Implicit guidance of attention in contextual cueing: Neuropsychological and developmental evidence. Neuroscience & Biobehavioral Reviews, 105, 115–125. https://doi.org/10.1016/j.neubiorev.2019.07.002
Johnson, J. S., Woodman, G. F., Braun, E., & Luck, S. J. (2007). Implicit memory influences the allocation of attention in visual cortex. Psychonomic Bulletin & Review, 14(5), 834–839. https://doi.org/10.3758/BF03194108
Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. In B. A. Cambell & R. M. Church (Eds.), Punishment and aversive behavior (pp. 279–296) New York, NY: Appleton-Century-Crofts.
Kersten, D., Mamassian, P., & Yuille, A. (2004). Object Perception as Bayesian Inference. Annual Review of Psychology, 55(1), 271–304. https://doi.org/10.1146/annurev.psych.55.090902.142005
Kroell, L. M., Schlagbauer, B., Zinchenko, A., Müller, H. J., & Geyer, T. (2019). Behavioural evidence for a single memory system in contextual cueing. Visual Cognition, 27(5-8), 551–562. https://doi.org/10.1080/13506285.2019.1648347
Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33(4), 816. https://doi.org/10.1037/0096-1523.33.4.816
Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 1000. https://doi.org/10.1037/0096-1523.20.5.1000
Nickel, A. E., Hopkins, L. S., Minor, G. N., & Hannula, D. E. (2020). Attention capture by episodic long-term memory. Cognition, 201, 104312. https://doi.org/10.1016/j.cognition.2020.104312
Palmer, T. E. (1975). The effects of contextual scenes on the identification of objects. Memory & Cognition, 3(5), 519–526. https://doi.org/10.3758/BF03197524
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial vision, 10(4), 437–442. https://doi.org/10.1163/156856897X00366
Sakata, C., Ueda, Y., & Moriguchi, Y. (2021). Learning of spatial configurations of a co-actor's attended objects in joint visual search. Acta Psychologica, 215, 103274. https://doi.org/10.1016/j.actpsy.2021.103274
Schankin, A., & Schubö, A. (2009). Cognitive processes facilitated by contextual cueing: Evidence from event-related brain potentials. Psychophysiology, 46(3), 668–679. https://doi.org/10.1111/j.1469-8986.2009.00807.x
Schankin, A., & Schubö, A. (2010). Contextual cueing effects despite spatially cued target locations. Psychophysiology, 47(4), 717–727. https://doi.org/10.1111/j.1469-8986.2010.00979.x
Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76. https://doi.org/10.1016/j.tics.2005.12.009
Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others' actions: just like one's own? Cognition, 88(3), B11–B21. https://doi.org/10.1016/S0010-0277(03)00043-X
Sebanz, N., Knoblich, G., & Prinz, W. (2005). How two share a task: corepresenting stimulus-response mappings. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1234. https://doi.org/10.1037/0096-1523.31.6.1234
Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2019). Mechanisms of contextual cueing: A tutorial review. Attention, Perception, & Psychophysics, 81(8), 2571–2589. https://doi.org/10.3758/s13414-019-01832-2
Summerfield, J. J., Rao, A., Garside, N., & Nobre, A. C. (2011). Biasing Perception by Spatial Long-Term Memory. The Journal of Neuroscience, 31(42), 14952. https://doi.org/10.1523/JNEUROSCI.5541-10.2011
Szymanski, C., Pesquita, A., Brennan, A. A., Perdikis, D., Enns, J. T., Brick, T. R., . . . Lindenberger, U. (2017). Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation. NeuroImage, 152, 425-436. https://doi.org/10.1016/j.neuroimage.2017.03.013
Töllner, T., Conci, M., & Müller, H. J. (2015). Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping, 36(3), 935–944. https://doi.org/10.1002/hbm.22677
Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102. https://doi.org/10.3758/s13423-015-0892-6
Vaskevich, A., & Luria, R. (2018). Adding statistical regularity results in a global slowdown in visual search. Cognition, 174, 19–27. https://doi.org/10.1016/j.cognition.2018.01.010
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871–878. https://doi.org/10.3758/s13423-012-0280-4
Verga, L., & Kotz, S. A. (2017). Help me if I can't: Social interaction effects in adult contextual word learning. Cognition, 168, 76–90. https://doi.org/10.1016/j.cognition.2017.06.018
Vesper, C., Abramova, E., Bütepage, J., Ciardo, F., Crossey, B., Effenberg, A., . . . Nijssen, S. R. (2017). Joint action: mental representations, shared information and general mechanisms for coordinating with others. Frontiers in Psychology, 7, 2039. https://doi.org/10.3389/fpsyg.2016.02039
Zang, X., Assumpção, L., Wu, J., Xie, X., & Zinchenko, A. (2021). Task-Irrelevant Context Learned Under Rapid Display Presentation: Selective Attention in Associative Blocking. Frontiers in Psychology, 12, 675848–675848. https://doi.org/10.3389/fpsyg.2021.675848
Zang, X., Geyer, T., Assumpção, L., Müller, H. J., & Shi, Z. (2016). From foreground to background: How task-neutral context influences contextual cueing of visual search. Frontiers in Psychology, 7, 852. https://doi.org/10.3389/fpsyg.2016.00852
Zang, X., Jia, L., Müller, H. J., & Shi, Z. (2015). Invariant spatial context is learned but not retrieved in gaze-contingent tunnel-view search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 807. https://doi.org/10.1037/xlm0000060
Zang, X., Shi, Z., Müller, H. J., & Conci, M. (2017). Contextual cueing in 3D visual search depends on representations in planar-, not depth-defined space. Journal of Vision, 17(5), 17–17. https://doi.org/10.1167/17.5.17
Zang, X., Zinchenko, A., Jia, L., Assumpção, L., & Li, H. (2018). Global Repetition Influences Contextual Cueing. Frontiers in Psychology, 9, 402. https://doi.org/10.3389/fpsyg.2018.00402
Zellin, M., Conci, M., von Mühlenen, A., & Müller, H. J. (2011). Two (or three) is one too many: testing the flexibility of contextual cueing with multiple target locations. Attention, Perception, & Psychophysics, 73(7), 2065. https://doi.org/10.3758/s13414-011-0175-x
Zellin, M., von Mühlenen, A., Müller, H. J., & Conci, M. (2014). Long-term adaptation to change in implicit contextual learning. Psychonomic Bulletin & Review, 21(4), 1073–1079. https://doi.org/10.3758/s13423-013-0568-z
Zinchenko, A., Conci, M., Hauser, J., Müller, H. J., & Geyer, T. (2020a). Distributed attention beats the down-side of statistical context learning in visual search. Journal of Vision, 20(7), 4–4. https://doi.org/10.1167/jov.20.7.4
Zinchenko, A., Conci, M., Müller, H. J., & Geyer, T. (2018). Predictive visual search: Role of environmental regularities in the learning of context cues. Attention, Perception, & Psychophysics, 80(5), 1096–1109. https://doi.org/10.3758/s13414-018-1500-4
Zinchenko, A., Conci, M., Töllner, T., Müller, H. J., & Geyer, T. (2020b). Automatic Guidance (and Misguidance) of Visuospatial Attention by Acquired Scene Memory: Evidence From an N1pc Polarity Reversal. Psychological Science, 31(12), 1531–1543. https://doi.org/10.1177/0956797620954815