Contextual Fear Learning and Extinction in the Primary Visual Cortex of Mice

Neuroscience Bulletin - Tập 39 - Trang 29-40 - 2022
Xiaoke Xie1,2,3, Shangyue Gong4, Ning Sun5, Jiazhu Zhu3,6, Xiaobin Xu5, Yongxian Xu5, Xiaojing Li5, Zhenhong Du3,6, Xuanting Liu5, Jianmin Zhang4, Wei Gong4,5, Ke Si1,2,3,5,6
1Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
2College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
3Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, China
4Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
5MOE Frontier Science Center for Brain Science & Brain-Machine Integration, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
6State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China

Tóm tắt

Fear memory contextualization is critical for selecting adaptive behavior to survive. Contextual fear conditioning (CFC) is a classical model for elucidating related underlying neuronal circuits. The primary visual cortex (V1) is the primary cortical region for contextual visual inputs, but its role in CFC is poorly understood. Here, our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval, and both CFC learning and extinction increased the turnover rate of axonal boutons in V1. The frequency of neuronal Ca2+ activity decreased after CFC learning, while CFC extinction reversed the decrease and raised it to the naïve level. Contrary to control mice, the frequency of neuronal Ca2+ activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction, indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca2+ activity. These findings reveal a critical role of microglia in neocortical information processing in V1, and suggest potential approaches for cellular-based manipulation of acquired fear memory.

Tài liệu tham khảo

Izquierdo I, Furini CR, Myskiw JC. Fear memory. Physiol Rev 2016, 96: 695–750. Bergstrom HC. The neurocircuitry of remote cued fear memory. Neurosci Biobehav Rev 2016, 71: 409–417. Clawson BC, Pickup EJ, Ensing A, Geneseo L, Shaver J, Gonzalez-Amoretti J. Causal role for sleep-dependent reactivation of learning-activated sensory ensembles for fear memory consolidation. Nat Commun 2021, 12: 1200. Li Y, Dong Y, Yang L, Tucker L, Zong X, Brann D, et al. Photobiomodulation prevents PTSD-like memory impairments in rats. Mol Psychiatry 2021, 26: 6666–6679. Yang Y, Liu DQ, Huang W, Deng J, Sun Y, Zuo Y, et al. Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nat Neurosci 2016, 19: 1348–1355. Lai CSW, Franke TF, Gan WB. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 2012, 483: 87–91. Xu C, Krabbe S, Gründemann J, Botta P, Fadok JP, Osakada F, et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 2016, 167: 961–972.e16. Salay LD, Ishiko N, Huberman AD. A midline thalamic circuit determines reactions to visual threat. Nature 2018, 557: 183–189. Dalmay T, Abs E, Poorthuis RB, Hartung J, Pu DL, Onasch S, et al. A critical role for neocortical processing of threat memory. Neuron 2019, 104: 1180–1194.e7. Li Z, Yan A, Guo K, Li W. Fear-related signals in the primary visual cortex. Curr Biol 2019, 29: 4078–4083.e2. Lv Y, Chen P, Shan QH, Qin XY, Qi XH, Zhou JN. Regulation of cued fear expression via corticotropin-releasing-factor neurons in the ventral anteromedial thalamic nucleus. Neurosci Bull 2021, 37: 217–228. Zhang X, Kim J, Tonegawa S. Amygdala reward neurons form and store fear extinction memory. Neuron 2020, 105: 1077–1093.e7. Roy DS, Kitamura T, Okuyama T, Ogawa SK, Sun C, Obata Y, et al. Distinct neural circuits for the formation and retrieval of episodic memories. Cell 2017, 170: 1000–1012.e19. Frank AC, Huang S, Zhou M, Gdalyahu A, Kastellakis G, Silva TK, et al. Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat Commun 2018, 9: 422. Ozawa M, Davis P, Ni J, Maguire J, Papouin T, Reijmers L. Experience-dependent resonance in amygdalo-cortical circuits supports fear memory retrieval following extinction. Nat Commun 2020, 11: 4358. Finnie PSB, Gamache K, Protopoulos M, Sinclair E, Baker AG, Wang SH, et al. Cortico-hippocampal schemas enable NMDAR-independent fear conditioning in rats. Curr Biol 2018, 28: 2900–2909.e5. Çaliskan G, Müller I, Semtner M, Winkelmann A, Raza AS, Hollnagel JO, et al. Identification of parvalbumin interneurons as cellular substrate of fear memory persistence. Cereb Cortex 2016, 26: 2325–2340. Rajasethupathy P, Sankaran S, Marshel JH, Kim CK, Ferenczi E, Lee SY, et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 2015, 526: 653–659. Makino H, Komiyama T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat Neurosci 2015, 18: 1116–1122. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 2014, 345: 660–665. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat Neurosci 2016, 19: 299–307. Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 2017, 95: 1420–1432.e5. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. Experience-dependent spatial expectations in mouse visual cortex. Nat Neurosci 2016, 19: 1658–1664. Frischen A, Eastwood JD, Smilek D. Visual search for faces with emotional expressions. Psychol Bull 2008, 134: 662–676. Brooks SJ, Savov V, Allzén E, Benedict C, Fredriksson R, Schiöth HB. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: A systematic meta-analysis of fMRI studies. Neuroimage 2012, 59: 2962–2973. Chen Y, Zhu B, Shou T. Anatomical evidence for the projections from the basal nucleus of the amygdala to the primary visual cortex in the cat. Neurosci Lett 2009, 453: 126–130. Amaral DG, Behniea H, Kelly JL. Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 2003, 118: 1099–1120. Chen Y, Li H, Jin Z, Shou T, Yu H. Feedback of the amygdala globally modulates visual response of primary visual cortex in the cat. Neuroimage 2014, 84: 775–785. Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of dendritic spines after learning. Science 2014, 344: 1173–1178. Zhou Y, Lai CSW, Bai Y, Li W, Zhao R, Yang G, et al. REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun 2020, 11: 4819. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 2009, 10: 647–658. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 2020, 182: 388–403.e15. Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature 2009, 462: 920–924. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR III, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013, 155: 1596–1609. Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 2020, 367: 688–694. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, de Paola V, Hofer SB, et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 2009, 4: 1128–1144. de Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 2006, 49: 861–875. Holtmaat A, Randall J, Cane M. Optical imaging of structural and functional synaptic plasticity in vivo. Eur J Pharmacol 2013, 719: 128–136. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014, 82: 380–397. Gramlich MW, Klyachko VA. Nanoscale organization of vesicle release at central synapses. Trends Neurosci 2019, 42: 425–437. Rizalar FS, Roosen DA, Haucke V. A presynaptic perspective on transport and assembly mechanisms for synapse formation. Neuron 2021, 109: 27–41. Qiao Q, Ma L, Li W, Tsai JW, Yang G, Gan WB. Long-term stability of axonal boutons in the mouse barrel cortex. Dev Neurobiol 2016, 76: 252–261. Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M. Integration of visual motion and locomotion in mouse visual cortex. Nat Neurosci 2013, 16: 1864–1869. Niell CM, Stryker MP. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 2010, 65: 472–479. Keller GB, Bonhoeffer T, Hübener M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 2012, 74: 809–815. Han Y, Kebschull JM, Campbell RAA, Cowan D, Imhof F, Zador AM, et al. The logic of single-cell projections from visual cortex. Nature 2018, 556: 51–56. Klawonn AM, Fritz M, Castany S, Pignatelli M, Canal C, Similä F, et al. Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity 2021, 54: 225–234.e6. Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X. Microglia elimination increases neural circuit connectivity and activity in adult mouse cortex. J Neurosci 2021, 41: 1274–1287. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature 2020, 586: 417–423. Szalay G, Martinecz B, Lénárt N, Környei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 2016, 7: 11499.