Containment results for ideals of various configurations of points in

Journal of Pure and Applied Algebra - Tập 218 - Trang 65-75 - 2014
Cristiano Bocci1, Susan M. Cooper2, Brian Harbourne3
1Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy
2Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, USA
3Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA

Tài liệu tham khảo

Atiyah, 1969 Bauer, 2009, A primer on Seshadri constants, vol. 496 Bocci, 2010, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc., 138, 1175, 10.1090/S0002-9939-09-10108-9 Bocci, 2010, Comparing powers and symbolic powers of ideals, J. Algebraic Geometry, 19, 399, 10.1090/S1056-3911-09-00530-X A. Boocher, The module of differentials, evolutions, and the Eisenbud–Mazur conjecture, Senior Thesis, Notre Dame University, 2008. Chudnovsky, 1981, Singular points on complex hypersurfaces and multidimensional Schwarz Lemma, vol. 12 S.M. Cooper, S.G. Hartke, The alpha problem & line count configurations, preprint, 2011. A. Denkert, M. Janssen, Containment problem for points on a reducible conic in P2, preprint, arXiv:1207.7153. M. Dumnicki, Symbolic powers of ideals of generic points in P3, preprint, 2011, arXiv:1105.0258. M. Dumnicki, T. Szemberg, H. Tutaj-Gasińska, A counter-example to a question by Huneke and Harbourne, preprint, 2013, 5 pp., arXiv:1301.7440. Ein, 2001, Uniform behavior of symbolic powers of ideals, Invent. Math., 144, 241, 10.1007/s002220100121 Eisenbud, 1997, Evolutions, symbolic squares, and fitting ideals, J. Reine Angew. Math., 488, 189 Esnault, 1983, Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann., 263, 75, 10.1007/BF01457085 Fatabbi, 2006, Resolutions of ideals of fat points with support in a hyperplane, Proc. Amer. Math. Soc., 134, 3475, 10.1090/S0002-9939-06-08514-5 Geramita, 1995, Graded Betti numbers of some embedded rational n-folds, Math. Ann., 301, 363, 10.1007/BF01446634 Harbourne, 1985, Complete linear systems on rational surfaces, Trans. Amer. Math. Soc., 289, 213, 10.1090/S0002-9947-1985-0779061-2 Harbourne, 1986, The geometry of rational surfaces and Hilbert functions of points in the plane, Canad. Math. Soc. Conf. Proc., 6, 95 B. Harbourne, Seshadri constants and very ample divisors on algebraic surfaces, version 2. arXiv: math.AG/0103029. B. Harbourne, C. Huneke, Are symbolic powers highly evolved? preprint, J. Ramanujan Math. Soc. (in press) arXiv:1103.5809. Harbourne, 2003, Resolutions of ideals of quasiuniform fat point subschemes of P2, Trans. Amer. Math. Soc., 355, 593, 10.1090/S0002-9947-02-03124-0 Hochster, 2002, Comparison of symbolic and ordinary powers of ideals, Invent. Math., 147, 349, 10.1007/s002220100176 Matsumura, 1970 Nagata, 1959, On the 14-th problem of Hilbert, Amer. J. Math., 81, 766, 10.2307/2372927 K. Schwede, A canonical linear system associated to adjoint divisors in characteristic p>0, preprint 2011, 14pp., arXiv:1107.3833v2. Skoda, 1977, Estimations L2 pour l’opérateur ∂ˆ et applications arithmétiques, vol. 578, 314 Takagi, 2008, Generalized test ideals and symbolic powers, Michigan Math. J., 57, 711, 10.1307/mmj/1220879433 Waldschmidt, 1977, Propriétés arithmétiques de fonctions de plusieurs variables II, vol. 578, 108 Waldschmidt, 1979, Nombres transcendants et groupes algébriques Zariski, 1960