Containerless Measurements of Density and Viscosity for a Cu $$_{48}$$ Zr $$_{52}$$ Liquid

International Journal of Thermophysics - Tập 35 - Trang 1677-1686 - 2014
J. C. Bendert1, K. F. Kelton1
1Department of Physics, Washington University, Saint Louis, USA

Tóm tắt

The densities of solid and liquid Cu $$_{48}$$ Zr $$_{52}$$ and the viscosity of the liquid were measured in a containerless electrostatic levitation system using optical techniques. The measured density of the liquid at the liquidus temperature (1223 K) is (7.02 $$\pm $$ 0.01) g $$\cdot $$ cm $$^{-3}$$ and the density of the solid extrapolated to that temperature is (7.15 $$\pm $$ 0.01) g $$\cdot $$ cm $$^{-3}$$ . The thermal expansion coefficients measured at 1223 K are (6.4 $$\pm $$ 0.1) $$\,\times \,10^{-5}$$ K $$^{-1}$$ in the liquid phase and (3.5 $$\pm $$ 0.3) $$\,\times \,10^{-5}$$ K $$^{-1}$$ in the solid phase. The viscosity of the liquid, measured with the oscillating drop technique, is of the form $$A\exp \left[ \left( {{E}_{0}}+{{E}_{1}}\left( 1/T-1/{{T}_{0}} \right) \right) \times \left( 1/T-1/{{T}_{0}} \right) \right] $$ , where $${{T}_{0}}=1223$$ K, $$A= (0.0254 \pm 0.0004)$$ Pa $$\cdot $$ s, $${{E}_{0}}$$ =  (8.43 $$\pm $$ 0.26) $$\,\times \,10^3$$ K and $${{E}_{1}}$$ =  (1.7 $$\pm $$ 0.2) $$\,\times 10^7$$ K $$^{2}$$ .

Tài liệu tham khảo

M.B. Tang, D.Q. Zhao, M.X. Pan, W.H. Wang, Chin. Phys. Lett. 21, 901 (2004) P. Yu, H.Y. Bai, M.B. Tang, W.L. Wang, J. Non-Cryst, Solids 351, 1328 (2005) Q. Zhang, W. Zhang, A. Inoue, Scr. Mater. 55, 711 (2006) Y. Li, Q. Guo, J.A. Kalb, C.V. Thompson, Science 322, 1816 (2008) R. Bradshaw, M. Warren, J. Rogers, T. Rathz, A. Gangopadhyay, K. Kelton, R. Hyers, Ann. NY Acad. Sci. 1077, 63 (2006) S.K. Chung, D.B. Thiessen, W.K. Rhim, Rec. Sci. Instrum. 67, 3175 (1996) W.K. Rhim, K. Ohsaka, P.F. Paradis, R.E. Spjut, Rec. Sci. Instrum. 70, 2796 (1999) I. Takehiko, P. Paul-Franois, I. Toshio, Y. Shinichi, Meas. Sci. Technol. 16, 443 (2005) I. Egry, S. Sauerland, Mater. Sci. Eng. A 178, 73 (1994) I. Egry, H. Giffard, S. Schneider, Meas. Sci. Technol. 16, 426 (2005) S. Sauerland, K. Eckler, I. Egry, J. Mater. Sci. Lett. 11, 330 (1992) N.A. Mauro, K.F. Kelton, Rec. Sci. Instrum. 82, 035114 (2011) T. Meister, H. Werner, G. Lohoefer, D.M. Herlach, H. Unbehauen, Control Eng. Pract. 11, 117 (2003). doi:10.1016/S0967-0661(02)00102-8 T. Ishikawa, P.F. Paradis, S. Yoda, Rec. Sci. Instrum. 72, 2490 (2001) R.C. Bradshaw, D.P. Schmidt, J.R. Rogers, K.F. Kelton, R.W. Hyers, Rec. Sci. Instrum. 76, 125108 (2005) R.W. Hyers, R.C. Bradshaw, J.R. Rogers, T.J. Rathz, G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, Int. J. Thermophys. 25, 1155 (2004) S. Ozawa, K. Morohoshi, T. Hibiya, H. Fukuyama, J. Appl. Phys. 107, 014910 (2010) K. Morohoshi, M. Uchikoshi, M. Isshiki, H. Fukuyama, ISIJ Int. 51, 1580 (2011) H. Lamb, Proc. London Math. Soc. s1-13, 51 (1881) P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)