Contact metric manifolds

Themis Koufogiorgos1
1Department of Mathematics , University of Ioannina , Ioannina , GREECE

Tóm tắt

In this paper we study contact metric manifoldsM 2n+1(ϕ, η, ξ,g) with characteristic vector field ξ belonging to thek-nullity distribution. Moreover we prove that there exist i) nonK-contact, contact metric manifolds of dimension greater than 3 with Ricci operator commuting with ϕ and ii) 3-dimensional contact metric manifolds with non-zero constant ϕ-sectional curvature.

Từ khóa


Tài liệu tham khảo

Blair, D.E.:Contact manifolds in Riemannian Geometry. Lect. Notes Math. 509, Springer-Verlag, Berlin 1976. Blair, D.E.: Two remarks on contact metric structure.Tôhoku Math. J. 29 (1977), 319–324. Davidov, J.;Muskarov, O.: Twistor spaces with Hermitian Ricci tensor.Proc. Amer. Math. Soc. 109 (1990), 1115–1120. Deng, S.R.:Variational problems on contact manifolds. Thesis Michigan State University, 1991. Blair, D.E.;Koufogiorgos, T.;Sharma, R.: A classification of 3-dimensional contact metric manifolds withQϕ=ϕQ.Kōdai Math. J. 13 (1990), 391–401. Olszak, Z.: On contact metric manifolds.Tôhoku Math. J. 31 (1979), 247–253. Tanno, S.: Ricci curvatures of contact Riemannian manifolds.Tôhoku Math. J. 40 (1988), 441–448. Tanno, S.: The topology of contact Riemannian manifolds.Ill. J. Math. 12 (1968), 700–717.