Contact metric manifolds satisfying a nullity condition
Tóm tắt
Từ khóa
Tài liệu tham khảo
C. Baikoussis, D. E. Blair and T. Koufogiorgos,A decomposition of the curvature tensor of a contact manifold satisfying R(X, Y)ζ=κ(η(Y)X-η(X)Y), Mathematics Technical Report, University of Ioannina, No 204, June 1992.
D. E. Blair,Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics509, Springer-Verlag, Berlin, 1976.
D. E. Blair,Two remarks on contact metric structures, The Tôhoku Mathematical Journal29 (1977), 319–324.
D. E. Blair and J. N. Patnaik,Contact manifolds with characteristic vector field annihilated by the curvature, Bulletin of the Institute of Mathematics. Academia Sinica9 (1981), 533–545.
D. E. Blair,When is the tangent sphere bundle locally symmetric?, inGeometry and Topology, World Scientific, Singapore, 1989, pp. 15–30.
D. E. Blair, T. Koufogiorgos and R. Sharma,A classification of 3-dimensional contact metric manifolds with Qφ=φQ, Kodai Mathematical Journal,13 (1990), 391–401.
D. E. Blair and H. Chen,A classification of 3-dimensional contact metric manifolds with Qφ=φQ, II, Bulletin of the Institute of Mathematics. Academia Sinica20 (1992), 379–383.
O. Kowalski,Curvature of the induced Riemannian metric on the tangent bundle, Journal für die Reine und Angewandte Mathematik250 (1971), 124–129.
J. Milnor,Curvature of left invariant metrics on Lie groups, Advances in Mathematics21 (1976), 293–329.
S. Tanno,The topology of contact Riemannian manifolds, Illinois Journal of Mathematics12 (1968), 700–717.
S. Tanno,Isometric immersions of Sasakian manifolds in spheres, Kodai Mathematical Seminar Reports21 (1969), 448–458.
S. Tanno,Ricci curvatures of contact Riemannian manifolds, The Tôhoku Mathematical Journal40 (1988), 441–448.
F. Trikerri and L. Vanhecke,Homogeneous structure on Riemannian manifolds, London Mathematical Society Lecture Note Series, 83, Cambridge Univ. Press, London, 1983.