Contact Area of Electrification Materials Relating to Triboelectric Generators: A Comparative Study

Aristeidis Repoulias1, Irini Logothetis2, Dimitra Matsouka1, Savvas Vassiliadis1
1Department of Electrical and Electronics Engineering, University of West Attica, Athens, Greece
2Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia

Tóm tắt

Triboelectric generators (TEGs) stemming from the triboelectric phenomena, are promising for energy harvesting due to their high output power and efficiency. Analysis of the tribo material selection for TEGs has suggested that energy generation is linked to heterogeneous and homogeneous materials found at opposite ends of the triboelectric series. Current research has identified that the triboelectric phenomenon also exists from contact between identical tribo materials with the advancement of surface modification. However, a comparison of composite and identical homogeneous TEGs has yet to be reported. For this research, organic polymer membranes Polyamide-6 (PA6) and Polytetrafluoroethylene (PTFE) were evaluated. The membranes were cut into samples of varying dimensions to build three sets of TEGs for comparison. Two identical sets of four sampled TEGs were fabricated using the same membrane (i.e., PA6-PA6 and PTFE-PTFE); in contrast to a composite set of four sampled TEGs made from the two distinct membranes (i.e., PA6-PTFE). By repeatedly sampling the TEGs in sliding mode at a speed of 0.2 m/s and with a vertical force of 9.8 N an open circuit voltage (Voc) was generated and recorded. As a result, the Voc of the identical TEGs was compared to the Voc of the composite TEG in which the tribo materials are located at opposite ends of the triboelectric series. It was also observed that the Voc increased almost linear in relation to the surface area of the TEGs; thus, suggesting that the surface area of the TEG can influence significantly the Voc to a great extent.

Tài liệu tham khảo

Wang, Z.L.: Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2015). https://doi.org/10.1039/C4FD00159A Lee, M., Chen, C.-Y., Wang, S., Cha, S.N., Park, Y.J., Kim, J.M., Chou, L.-J., Wang, Z.L.: A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. 24, 1759–1764 (2012). https://doi.org/10.1002/adma.201200150 Meddad, M., Eddiai, A., Chérif, A., Hajjaji, A., Boughaleb, Y.: Model of piezoelectric self powered supply for wearable devices. Superlattices Microstruct. 71, 105–116 (2014). https://doi.org/10.1016/j.spmi.2014.03.038 Shu, Y.C., Lien, I.C.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499 (2006). https://doi.org/10.1088/0964-1726/15/6/001 Nunes-Pereira, J., Sencadas, V., Correia, V., Rocha, J.G., Lanceros-Méndez, S.: Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites. Sens. Actuators A: Phys. 196, 55–62 (2013). https://doi.org/10.1016/j.sna.2013.03.023 Chai, Z., Zhang, N., Sun, P., Huang, Y., Zhao, C., Fan, H.J., Fan, X., Mai, W.: Tailorable and Wearable Textile Devices for Solar Energy Harvesting and simultaneous storage. ACS Nano. 10, 9201–9207 (2016). https://doi.org/10.1021/acsnano.6b05293 Wang, Y., Jia, B., Qin, F., Wu, Y., Meng, W., Dai, S., Zhou, Y., Zhan, X.: Semitransparent, non-fullerene and flexible all-plastic solar cells. Polym. C. 108–112 (2016). https://doi.org/10.1016/j.polymer.2016.11.015 Du, Y., Cai, K., Chen, S., Wang, H., Shen, S.Z., Donelson, R., Lin, T.: Thermoelectric fabrics: Toward Power Generating Clothing. Sci. Rep. 5, 6411 (2015). https://doi.org/10.1038/srep06411 Kossyvakis, D.N., Vassiliadis, S.G., Vossou, C.G., Mangiorou, E.E., Potirakis, S.M., Hristoforou, E.V.: Computational analysis of a thermoelectric generator for Waste-Heat Harvesting in Wearable systems. J. Electron. Mater. 45, 2957–2966 (2016). https://doi.org/10.1007/s11664-016-4452-2 Matsouka, D., Vassiliadis, S., Prekas, K., Bayramol, D.V., Soin, N., Siores, E.: On the measurement of the Electrical Power produced by Melt Spun Piezoelectric Textile Fibres. J. Electron. Mater. 45, 5112–5126 (2016). https://doi.org/10.1007/s11664-016-4710-3 Ahn, Y., Song, S., Yun, K.-S.: Woven flexible textile structure for wearable power-generating tactile sensor array. Smart Mater. Struct. 24, 075002 (2015). https://doi.org/10.1088/0964-1726/24/7/075002 Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V., Siores, E.: Novel 3-D spacer all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014). https://doi.org/10.1039/C3EE43987A Shin, S., Balasubramaniam, S., Ramadoss, A., Kim, S.: Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energy Res. 40 (2015). https://doi.org/10.1002/er.3376 Xia, X., Liu, G., Chen, L., Li, W., Xi, Y., Shi, H., Hu, C.: Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality. Nanotechnology. 26, 475402 (2015). https://doi.org/10.1088/0957-4484/26/47/475402 Zi, Y., Wang, J., Wang, S., Li, S., Wen, Z., Guo, H., Wang, Z.L.: Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 7, 10987 (2016). https://doi.org/10.1038/ncomms10987 Niu, S., Wang, S., Lin, L., Liu, Y., Zhou, Y.S., Hu, Y., Wang, Z.L.: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013). https://doi.org/10.1039/c3ee42571a Wang, Z.L.: Triboelectric Nanogenerators as New Energy Technology for Self-Powered systems and as active mechanical and chemical sensors. ACS Nano. 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z Zhu, G., Peng, B., Chen, J., Jing, Q., Lin Wang, Z.: Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy. 14, 126–138 (2015). https://doi.org/10.1016/j.nanoen.2014.11.050 Diaz, A.F., Felix-Navarro, R.M.: A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostatics - J ELECTROSTAT. 62, 277–290 (2004). https://doi.org/10.1016/j.elstat.2004.05.005 Park, C.-H., Koo Park, J., Seok Jeon, H., Chul Chun, B.: Triboelectric series and charging properties of plastics using the designed vertical-reciprocation charger. J. Electrostat. 66, 578–583 (2008). https://doi.org/10.1016/j.elstat.2008.07.001 McCarty, L.S., Whitesides, G.M.: Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew Chem. Int. Ed. Engl. 47, 2188–2207 (2008). https://doi.org/10.1002/anie.200701812 Albrecht, V., Janke, A., Németh, E., Spange, S., Schubert, G., Simon, F.: Some aspects of the polymers’ electrostatic charging effects. J. Electrostat. 67, 7–11 (2009). https://doi.org/10.1016/j.elstat.2008.10.002 Lowell, J., Truscott, W.: Triboelectrification of identical insulators. II. Theory and further experiments. J. Phys. D. 19, 1281 (2000). https://doi.org/10.1088/0022-3727/19/7/018 Németh, E., Albrecht, V., Schubert, G., Simon, F.: Polymer tribo-electric charging: Dependence on thermodynamic surface properties and relative humidity. J. Electrostat. 58, 3–16 (2003). https://doi.org/10.1016/S0304-3886(02)00137-7 Honegger, E., Henry, P.S.H.: Generation of Static on Solid Insulators. Journal of the Textile Institute Proceedings 48:P5–P25. (1957). https://doi.org/10.1080/19447015708688112 Lacks, D.J., Sankaran, R.M.: Contact electrification of insulating materials. J. Phys. D. 44, 453001 (2011). https://doi.org/10.1088/0022-3727/44/45/453001 Fan, F.-R., Tian, Z.-Q., Wang, Z.L.: Flexible triboelectric generator! Nano Energy. 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004 Zhu, Y., Yang, B., Liu, J., Wang, X., Wang, L., Chen, X., Yang, C.: A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices. Sci. Rep. 6, 22233 (2016). https://doi.org/10.1038/srep22233 Zhu, G., Chen, J., Liu, Y., Bai, P., Zhou, Y.S., Jing, Q., Pan, C., Wang, Z.L.: Linear-Grating Triboelectric Generator based on sliding Electrification. Nano Lett. 13, 2282–2289 (2013). https://doi.org/10.1021/nl4008985 Yu, Y., Wang, X.: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9, 514–530 (2016). https://doi.org/10.1016/j.eml.2016.02.019 Zheng, Y., Cheng, L., Yuan, M., Wang, Z., Zhang, L., Qin, Y., Jing, T.: An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale. 6, 7842–7846 (2014). https://doi.org/10.1039/C4NR01934B Wang, S., Lin, L., Wang, Z.L.: Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012). https://doi.org/10.1021/nl303573d Zhu, G., Zhou, Y.S., Bai, P., Meng, X.S., Jing, Q., Chen, J., Wang, Z.L.: A shape-adaptive Thin-Film-Based Approach for 50% high-efficiency Energy Generation through Micro-grating Sliding Electrification. Adv. Mater. 26, 3788–3796 (2014). https://doi.org/10.1002/adma.201400021 Zhong, J., Zhong, Q., Fan, F., Zhang, Y., Wang, S., Hu, B., Wang, Z.L., Zhou, J.: Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy. 2, 491–497 (2013). https://doi.org/10.1016/j.nanoen.2012.11.015 Wang, X., Yang, Y.: Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy. 32, 36–41 (2017). https://doi.org/10.1016/j.nanoen.2016.12.006 Wang, X., Yang, B., Liu, J., Zhu, Y., Yang, C., He, Q.: A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci. Rep. 6, 36409 (2016). https://doi.org/10.1038/srep36409 Xue, C., Li, J., Zhang, Q., Zhang, Z., Hai, Z., Gao, L., Feng, R., Tang, J., Liu, J., Zhang, W., Sun, D.: A Novel Arch-shape Nanogenerator based on piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting. Nanomaterials. 5, 36–46 (2015). https://doi.org/10.3390/nano5010036 Jung, W.-S., Kang, M.-G., Moon, H.G., Baek, S.-H., Yoon, S.-J., Wang, Z., Kim, S.-W., Kang, C.-Y.: High output piezo/triboelectric hybrid generator. Sci. Rep. 5, 9309 (2015). https://doi.org/10.1038/srep09309 Huang, L., Bai, G., Wong, M.-C., Yang, Z., Xu, W., Hao, J.: Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater. (Deerfield Beach Fla). 28 (2016). https://doi.org/10.1002/adma.201505839 Han, M., Chen, X., Yu, B., Zhang, H.: Coupling of Piezoelectric and Triboelectric Effects: From Theoretical Analysis to Experimental Verification. Advanced Electronic Materials (2015) Chen, X., Han, M., Chen, H., Cheng, X., Song, Y., Su, Z., Jiang, Y., Zhang, H.: A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers. Nanoscale. 9, 1263–1270 (2017). https://doi.org/10.1039/C6NR07781A Zhu, M., Huang, Y., Ng, W.S., Liu, J., Wang, Z., Wang, Z., Hu, H., Zhi, C.: 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy. 27, 439–446 (2016). https://doi.org/10.1016/j.nanoen.2016.07.016 Zhao, Z., Yan, C., Liu, Z., Fu, X., Peng, L.-M., Hu, Y., Zheng, Z.: Wearable Technology: Machine-washable Textile Triboelectric Nanogenerators for Effective Human respiratory monitoring through Loom weaving of metallic yarns (Adv. Mater. 46/2016). Adv. Mater. 28, 10266–10266 (2016). https://doi.org/10.1002/adma.201670325 Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z.L.: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012). https://doi.org/10.1021/nl300988z Chen, J., Zhu, G., Yang, W., Jing, Q., Bai, P., Yang, Y., Hou, T.-C., Wang, Z.L.: Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 25, 6094–6099 (2013). https://doi.org/10.1002/adma.201302397 Lai, Y.-C., Deng, J., Zhang, S., Niu, S., Guo, H., Wang, Z.: Single-thread-based wearable and highly stretchable Triboelectric Nanogenerators and their applications in Cloth-based self-powered human-interactive and Biomedical Sensing. Adv. Funct. Mater. 27 (2016). https://doi.org/10.1002/adfm.201604462 Liang, Q., Zhanga, Z., Yan, X., Gu, Y., Zhao, Y., Zhang, G., Lu, S., Liao, Q., Zhang, Y.: Functional triboelectric generator as self-powered vibration sensor with contact mode and non-contact mode. Nano Energy. 14, 209–216 (2015). https://doi.org/10.1016/j.nanoen.2014.07.010 Kim, W., Hwang, H.J., Bhatia, D., Lee, Y., Baik, J.M., Choi, D.: Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency. Nano Energy. 21, 19–25 (2016). https://doi.org/10.1016/j.nanoen.2015.12.017 Zhang, A., Liu, W., Zhang, Y.: On the mechanism and optimization of triboelectric nanogenerators. Nanotechnology. 26, 425401 (2015). https://doi.org/10.1088/0957-4484/26/42/425401 Soin, N., Zhao, P., Prashanthi, K., Chen, J., Ding, P., Zhou, E., Shah, T., Ray, S.C., Tsonos, C., Thundat, T., Siores, E., Luo, J.: High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6). Nano Energy. 30, 470–480 (2016). https://doi.org/10.1016/j.nanoen.2016.10.040 Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., Wang, Z.L.: Triboelectric-generator-driven pulse Electrodeposition for Micropatterning. Nano Lett. 12, 4960–4965 (2012). https://doi.org/10.1021/nl302560k Zhu, G., Lin, Z.-H., Jing, Q., Bai, P., Pan, C., Yang, Y., Zhou, Y., Wang, Z.L.: Toward large-Scale Energy Harvesting by a nanoparticle-enhanced Triboelectric Nanogenerator. Nano Lett. 13, 847–853 (2013). https://doi.org/10.1021/nl4001053 Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., Wang, Z.L.: Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013). https://doi.org/10.1021/nl400738p Kaur, N., Bahadur, J., Panwar, V., Singh, P., Rathi, K., Pal, K.: Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci. Rep. 6, 38835 (2016). https://doi.org/10.1038/srep38835 Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., Wang, Z.L.: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano. 7, 7342–7351 (2013). https://doi.org/10.1021/nn403021m Wang, S., Xie, Y., Niu, S., Lin, L., Liu, C., Zhou, Y.S., Wang, Z.L.: Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionized-Air Injection: Methodology and theoretical understanding. Adv. Mater. 26, 6720–6728 (2014). https://doi.org/10.1002/adma.201402491 Niu, S., Liu, Y., Chen, X., Wang, S., Zhou, Y.S., Lin, L., Xie, Y., Wang, Z.L.: Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy. 12, 760–774 (2015). https://doi.org/10.1016/j.nanoen.2015.01.013 Hu, W., Wu, W., Zhou, H.: Wind-blown sand electrification inspired Triboelectric Energy Harvesting based on homogeneous inorganic materials contact: A theoretical study and prediction. Sci. Rep. 6, 19912 (2016). https://doi.org/10.1038/srep19912 Apodaca, M.M., Wesson, P.J., Bishop, K.J.M., Ratner, M.A., Grzybowski, B.A.: Contact electrification between identical materials. Angew. Chem. Int. Ed. 49, 946–949 (2010). https://doi.org/10.1002/anie.200905281