Constructive (2,3)-generation: A permutational approach

Paolo Sanchini1, M. C. Tamburini1
1Paolo Sanchini e M. Chiara Tamburini, Università Cattolica del Sacro Cuore, Brescia, Italia

Tóm tắt

Từ khóa


Tài liệu tham khảo

[BLS]Bass, H., Lazard, M. andSerre, J.P.,Sous-groupes d’indice fini dans SL (n, ℤ), Bull. Amer. Math. Soc.,70 (1964), 385–392. 0

[CA]Carter, R.,Simple groups of Lie type, John Wiley and Sons, 1972.

[CDiM]Cazzola, M. andDi Martino, L.,(2,3)-generation of PSp(4,q), q=p m, p≠2,3 Res. Math.,23 (1993), 221–232.

[Co]Cohen, J.,On non Hurwitz groups, Glasgow Math. J.,22 (1981), 1–7.

[DiMT]Di Martino L. andTamburini, M.C.,2-generation of finite simple groups and some related topics, in Generators and Relations in Groups and Geometries, A. Barlotti et al., Kluwer Acad. Publ., (1991), 195–233.

[DiMV1]Di Martino, L. andVavilov, N.A.,(2,3)-generation of SL(n,q).I. Cases n=5,6,7, Comm. Algebra,22 (1994), 1321–1347.

[DiMV2]Di Martino, L. andVavilov, N.A.,(2,3)-generation of SL(n,q).II. Cases n≥8, Comm. Algebra, to appear.

[Ga]Garbe, D.,Über eine klasse von arithmetisch definierbaren Normalteilern der Modulgruppe, Math. Ann.,235 (1978), 195–215.

[HO’M]Hahn, A.J. andO’Meara, O.T.,The classical groups and K-Theory, Springer Verlag, 1989.

[LSh1]Liebeck, M. andShalev, A.,The probability of generating a finite simple group, Geom. Dedicata, to appear.

[LSh2]Liebeck, M. andShalev, A.,Classical groups, probabilistic methods, and the (2,3)-generation problem, in preparation.

[Mb]Macbeath, A.W.,Generators of linear fractional groups, Proc. Symp. Pure Math.,12 (1967), 14–32.

[Ma1]Malle, G.,Exceptional Groups of Lie type as Galois Groups, J. Reine Angew. Math.,392 (1988), 70–109.

[Ma2]Malle, G.,Hurwitz Groups and G 2, Canadian Math. Bull.,33 (1990), 349–357.

[Ma3]Malle, G.,Small rank exceptional Hurwitz groups, Groups of Lie type and their geometries, Proceedings of the Como conference, June 1993.

[Me]Mennicke, J.,Finite factor groups of the unimodular group, Ann. of Math.,81 (1965), 31–37.

[MP]Mason, A.W. andPride, J.S.,Normal subgroups of prescribed order and zero level of the modular group and related groups, J. London Math. Soc. (2),42 (1990), 465–474.

[Sc]Schupp, P.E.,Embeddings into simple groups, J. London Math. Soc. (2),13 (1976), 90–94.

[Ta]Tamburini, M.C.,Generation of certain simple groups by elements of small order, RILS,A121 (1987), 21–27.

[TV1]Tamburini, M.C. andVassallo, S.,(2,3)-generazione di SL(4,q) in caratteristica dispari e problemi collegati, Boll. Un. Mat. Ital.,(7) 7-B (1993),

[TV2]Tamburini, M.C. andVassallo, S.,(2,3)-generazione di gruppi lineari, Scritti in onore di Giovanni Melzi, Vita e Pensiero (1994), 392–399.

[TWG]Tamburini, M.C., Wilson, J.S. andGavioli, N.,On the (2,3)-generation of some classical groups I, J. Algebra,168 (1994), 353–370.

[TW]Tamburini, M.C. andWilson, J.S.,On the (2,3)-generation of some classical groups II, J. Algebra,176 (1995), 667–680.

[Wie]Wielandt, H.,Finite Permutation Groups, Academic Press, 1964.

[Wil]Wilson, J.S.,Economical generating sets for finite simple groups, Groups of Lie type and their geometries, Proceedings of the Como conference, June 1993.

[Wo]Woldar, A.J.,Genus Action of finite simple groups, Illinois Math. J. (3),33 (1989), 438–450.