Construction of the influenza A virus transmission tree in a college-based population: co-transmission and interactions between influenza A viruses
Tóm tắt
Co-infection of different influenza A viruses is known to occur but how viruses interact within co-infection remains unknown. An outbreak in a college campus during the 2009 pandemic involved two subtypes of influenza A: persons infected with pandemic A/H1N1; persons infected with seasonal A/H3N2 viruses; and persons infected with both at the same time (co-infection). This provides data to analyse the possible interaction between influenza A viruses within co-infection. We extend a statistical inference method designed for outbreaks caused by one virus to that caused by two viruses. The method uses knowledge of which subtype each case is infected with (and whether they were co-infected), contact information and symptom onset date of each case in the influenza outbreak. We then apply it to construct the most likely transmission tree during the outbreak in the college campus. Analysis of the constructed transmission tree shows that the simultaneous presence of the two influenza viruses increases the infectivity and the transmissibility of A/H1N1 virus but whether it changes the infectivity of A/H3N2 is unclear. The estimation also shows that co-transmission of both subtypes from co-infection is low and therefore co-infection cannot be sustained on its own. This study suggests that influenza A viruses within co-infected patients can interact in some ways rather than transmit independently, and this can enhance the spread of influenza A virus infection.
Tài liệu tham khảo
Denoeud L, Turbelin C, Ansart S, Valleron A-J, Flahault A, Carrat F. Predicting pneumonia and influenza mortality from morbidity data. PLoS ONE. 2007;2(5):e464. doi:10.1371/journal.pone.0000464.
Finkelman BS, Viboud C, Koelle K, Ferrari MJ, Bharti N, Grenfell BT. Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS ONE. 2007;12:e1296. doi:10.1371/journal.pone.0001296.
Pajak B, Stefanska I, Lepek K, Donevski S, Romanowska M, Szeliga M, et al. Rapid differentiation of mixed influenza A/H1N1 virus infections with seasonal and pandemic variants by multitemperature single-stranded conformational polymorphism analysis. J Clin Microbiol. 2011;49:2216–21.
Nie S, Roth RB, Stiles J, Mikhlina A, Lu X, Tang YW, et al. Evaluation of Alere I influenza A & B for rapid detection of influenza A and B. J Clin Microbiol. 2014;52:3339–44.
Sonoguchi T, Naito H, Hara M, Takeuchi Y, Fukumi H. Cross-subtype protection in humans during sequential, overlapping, and or concurrent epidemics caused by H3N2 and H1N1 influenza-viruses. J Infect Dis. 1985;151:81–8.
Ghedin E, Fitch A, Boyne A, Griesemer S, DePasse J, Bera J, et al. Mixed infection and the genesis of influenza virus diversity. J Virol. 2009;83:8832–42.
Perez DR, Sorrell E, Angel M, Ye J, Hickman D, Pena L et al. Fitness of pandemic H1N1 and seasonal influenza A viruses during co-infection. PLoS Current. 2009; doi:10.1371/currents.RRN1011.
Peacey M, Hall RJ, Sonnberg S. Pandemic (H1N1) 2009 and seasonal influenza A(H1N1) co-infection, New Zealand, 2009. Emerg Infect Dis. 2010;16:1618–20.
Lee N, Chan PKS, Lam W, Szeto CC, Hui DS. Co-infection with pandemic H1N1 and seasonal H3N2 influenza viruses. Ann Intern Med. 2010;152:618–9.
Myers UA, Kasper MA, Yasuda CY, Savuth C, Spiro DJ, Hallpin R, et al. Dual infection of novel influenza viruses A/H1N1 and A/H3N2 in a cluster of Cambodian patients. Am J Trop Mede Hyg. 2011;85:961–3.
Toda S, Okamoto R, Nishida T, Nakao T, Yoshikawa M, Suzuki E, et al. Isolation of influenza A/H3 and B viruses from an influenza patient: confirmation of co-infection by two influenza viruses. Jpn J Infect Dis. 2006;59:142–3.
Liu W, Li ZD, Tang F, Wei MT, Tong YG, Zhang L, et al. Mixed infections of pandemic H1N1 and seasonal H3N2 viruses in 1 outbreak. Clin Infect Dis. 2010;50:1359–65.
Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160(6):509–16.
Hens N, Calatayud L, Kurkela S, Tamme T, Wallinga J. Robust reconstruction and analysis of outbreak data: influenza A(H1N1)v transmission in a school-based population. Am J Epidemiol. 2012;176:196–203.
Boëlle P-Y, Ansart S, Cori A, Valleron A-J. Transmission parameters of the A/H1N1 (2009) influenza virus pandemic: a review. Influenza Other Respi Viruses. 2011;5:306–16.
Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–13.
Biggerstaff M, Cauchemez S, Reed C, Gambhrir M, Fineli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect Dis. 2014;14:480.
Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C, Ferguson N. Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data. PLoS Comput Biol. 2014;10(1):e1003457. doi:10.1371/journal.pcbi.1003457.
Davis BM, Aiello AE, Dawid S, Rohani P, Shrestha S, Foxman B. Influenza and community-acquired pneumonia interactions: the impact of order and time of infection on population patterns. Am J Epidemiol. 2012;175:363–7.
Zhang X-S, Cao K-F. The impact of coinfections and their simultaneous transmission on antigenic diversity and epidemic cycling of infectious diseases. BioMed Res Intern. 2014; Article ID 375862. http://dx.doi.org/10.1155/2014/375862.
Zhang X-S. Strain interactions as a mechanism for dominant strain alternation and incidence oscillation in infectious diseases: seasonal influenza as a case study. PLoS ONE. 2015;10(11):e0142170. doi:10.1371/journalpone.0142170.