Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value
Tài liệu tham khảo
Agren, 2013, Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production, J. Ind. Microbiol. Biotechnol., 40, 735, 10.1007/s10295-013-1269-3
Akada, 2006, PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae, Yeast, 23, 399, 10.1002/yea.1365
Arikawa, 1999, Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae, J. Biosci. Bioeng., 87, 28, 10.1016/S1389-1723(99)80004-8
Carmelo, 1997, Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae, Biochim. Biophys. Acta, 1325, 63, 10.1016/S0005-2736(96)00245-3
Dduntze, 1969, Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae, Eur. J. Biochem., 10, 83, 10.1111/j.1432-1033.1969.tb00658.x
Ding, 2011, Production of fumaric acid by Rhizopus oryzae: role of carbon–nitrogen ratio, Appl. Biochem. Biotechnol., 164, 1461, 10.1007/s12010-011-9226-y
Kanarek, 1964, The preparation and characterization of fumarase from swine heart muscle, J. Biol. Chem., 239, 4202, 10.1016/S0021-9258(18)91156-7
Kim, 2013, Production of 2,3-butanediol by engineered Saccharomyces cerevisiae, Bioresour. Technol., 146, 274, 10.1016/j.biortech.2013.07.081
Larsson, 1993, Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions, J. Bacteriol., 175, 4809, 10.1128/jb.175.15.4809-4816.1993
Li, 2010, One step recovery of succinic acid from fermentation broths by crystallization, Sep. Purif. Technol., 72, 294, 10.1016/j.seppur.2010.02.021
Li, 2013, A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli, Bioresour. Technol., 149, 333, 10.1016/j.biortech.2013.09.077
Liang, 2013, Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli, Bioresour. Technol., 143, 405, 10.1016/j.biortech.2013.06.031
Liu, 2007, Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level, Metab. Eng., 9, 21, 10.1016/j.ymben.2006.07.007
Liu, 2012, Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source, Bioresour. Technol., 135, 574, 10.1016/j.biortech.2012.08.120
Liu, 2013, Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli, Bioresour. Technol., 149, 84, 10.1016/j.biortech.2013.09.052
Lowry, 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265, 10.1016/S0021-9258(19)52451-6
Maris, 2004, Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast, Appl. Environ. Microbiol., 70, 159, 10.1128/AEM.70.1.159-166.2004
McAlister-Henn, 1995, Expression and function of a mislocalized form of peroxisomal malate dehydrogenase (MDH3) in yeast, J. Biol. Chem., 270, 21220, 10.1074/jbc.270.36.21220
McKinlay, 2007, Prospects for a bio-based succinate industry, Appl. Microbiol. Biotechnol., 76, 727, 10.1007/s00253-007-1057-y
Muratsubaki, 1998, One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 Gene, Arch. Biochem. Biophys., 352, 175, 10.1006/abbi.1998.0583
Otero, 2013, Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory, PLoS One, 8, e54144, 10.1371/journal.pone.0054144
Pines, 1996, The cytosolic pathway of l-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase, Appl. Microbiol. Biotechnol., 46, 393
Raab, 2010, Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid, Metab. Eng., 12, 518, 10.1016/j.ymben.2010.08.005
Remize, 2000, Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation, Appl. Environ. Microbiol., 66, 3151, 10.1128/AEM.66.8.3151-3159.2000
Song, 2006, Production of succinic acid by bacterial fermentation, Enzyme Microb. Technol., 39, 352, 10.1016/j.enzmictec.2005.11.043
Stucka, 1991, DNA sequences in chromosomes II and VII code for pyruvate carboxylase isoenzymes in Saccharomyces cerevisiae: analysis of pyruvate carboxylase-deficient strains, Mol. Gen. Genet., 229, 307, 10.1007/BF00272171
van Maris, 2003, Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae, Appl. Environ. Microbiol., 69, 2094, 10.1128/AEM.69.4.2094-2099.2003
Wang, 2009, Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli, Enzyme Microb. Technol., 45, 491, 10.1016/j.enzmictec.2009.08.003
Wang, 2012, Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering, Biochem. Eng. J., 67, 126, 10.1016/j.bej.2012.06.006
Xu, 2013, Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes, Bioresour. Technol., 148, 91, 10.1016/j.biortech.2013.08.115
Xu, 2012, Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae, Microb. Cell Fact., 11, 1, 10.1186/1475-2859-11-24
Zeikus, 1999, Biotechnology of succinic acid production and markets for derived industrial products, Appl. Microbiol. Biotechnol., 51, 545, 10.1007/s002530051431
Zelle, 2008, Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export, Appl. Environ. Microbiol., 74, 2766, 10.1128/AEM.02591-07
Zelle, 2010, Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 76, 5383, 10.1128/AEM.01077-10
Zhang, 2009, Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli, PNAS, 106, 20180, 10.1073/pnas.0905396106