Construction of a combined random forest and artificial neural network diagnosis model to screening potential biomarker for hepatoblastoma

Pediatric Surgery International - Tập 38 - Trang 2023-2034 - 2022
Shaowen Liu1, Qipeng Zheng1, Ruifeng Zhang1, Tengfei Li1, Jianghua Zhan1,2
1Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
2Tianjin Children’s Hospital, Tianjin, China

Tóm tắt

The purpose of our study is to identify potential biomarkers of hepatoblastoma (HB) and further explore the pathogenesis of it. Differentially expressed genes (DEGs) were incorporated into the combined random forest and artificial neural network diagnosis model to screen candidate genes for HB. Gene set enrichment analysis (GSEA) was used to analyze the ARHGEF2. Student’s t test was performed to evaluate the difference of tumor-infiltrating immune cells (TIICs) between normal and HB samples. Spearson correlation analysis was used to calculate the correlation between ARHGEF2 and TIICs. ARHGEF2, TCF3, TMED3, STMN1 and RAVER2 were screened by the new model. The GSEA of ARHGEF2 included cell cycle pathway and antigen processing presenting pathway. There were significant differences in the composition of partial TIICs between HB and normal samples (p < 0.05). ARHGEF2 was significantly correlated with memory B cells (Cor = 0.509, p < 0.05). These 5 candidate genes contribute to the molecular diagnosis and targeted therapy of HB. And we found “ARHGEF2–RhoA–Cyclin D1/CDK4/CDK6–EF2” is a key mechanism regulating cell cycle pathway in HB. This will be helpful in the treatment of HB. The occurrence of HB is related to abnormal TIICs. We speculated that memory B cells play an important role in HB.

Tài liệu tham khảo

Liu L, Wang J, Sun G et al (2019) m6A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Mol Cancer 18:188. https://doi.org/10.1186/s12943-019-1119-7 Hager J, Sergi CM (2021) Hepatoblastoma. In: Sergi CM (ed) Liver cancer [Internet]. Exon publications, Brisbane. Chapter 8. https://doi.org/10.36255/exonpublications.livercancer.2021.ch8 Hafberg E, Borinstein SC, Alexopoulos SP (2019) Contemporary management of hepatoblastoma. Curr Opin Organ Transplant 24(2):113–117. https://doi.org/10.1097/MOT.0000000000000618 Edgar R, Lash A (2002). The Gene Expression Omnibus (GEO): a gene expression and hybridization repository. http://www.icgeb.res.in/whotdr/cd1/PreCourseReading/NCBI_Handbook2/ch6d1.pdf Valanejad L, Cast A, Wright M et al (2018) PARP1 activation increases expression of modified tumor suppressors and pathways underlying development of aggressive hepatoblastoma. Commun Biol 1:67. https://doi.org/10.1038/s42003-018-0077-8 Hiyama E, Ueda Y, Kurihara S et al (2021) Gene expression profiling in hepatoblastoma cases of the Japanese Study Group for Pediatric Liver Tumors-2 (JPLT-2) trial. European J Mol Cancer. https://doi.org/10.31487/j.EJMC.2018.01.003 Carrillo-Reixach J, Torrens L, Simon-Coma M et al (2020) Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications. J Hepatol 73(2):328–341. https://doi.org/10.1016/j.jhep.2020.03.025 Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007 Lê S, Josse J, Husson F (2008) FactoMineR : an R package for multivariate analysis. J Stat Soft. https://doi.org/10.18637/jss.v025.i01 Wickham H. (2016) ggplot2: Elegant graphics for data analysis. Springer-verlag New York. https://ggplot2.tidyverse.orghttps://ggplot2.tidyverse.org Kolde R. (2019) pheatmap: Pretty Heatmaps. https://CRAN.R-project.org/package=pheatmap. Accessed 6 May 2022 Wu T, Hu E, Xu S et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141 Doms A, Schroeder M (2005) GoPubMed: exploring PubMed with the gene ontology. Nucleic Acids Res 33:W783–W786. https://doi.org/10.1093/nar/gki470 Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at genomenet. Nucleic Acids Res 30(1):42–46. https://doi.org/10.1093/nar/30.1.42 Liaw A, Wiener M (2002). Classification and Regression by randomForest. R News 2(3), 18-22. https://CRAN.R-project.org/doc/Rnews/ Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. https://doi.org/10.1186/1471-2105-12-77 Günther F, Fritsch S (2010) Neuralnet: training of neural networks. The R Journal 2(1):30. https://doi.org/10.32614/RJ-2010-006 Kassambara A. (2020) ggpubr: “ggplot2” Based Publication Ready Plots. Published online June 27, 2020. https://CRAN.R-project.org/package=ggpubr. Accessed 14 May 2022 Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29(14):1830–1831. https://doi.org/10.1093/bioinformatics/btt285 Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 14(1):7. https://doi.org/10.1186/1471-2105-14-7 Czauderna P, Garnier H (2018) Hepatoblastoma: current understanding, recent advances, and controversies. F1000Res 7:53. https://doi.org/10.12688/f1000research.12239.1 Sha YL, Liu S, Yan WW, Dong B (2019) Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma. Biosci Rep 39(9):BSR20192466. https://doi.org/10.1042/BSR20192466 Bao P, Yokobori T, Altan B et al (2017) High STMN1 expression is associated with cancer progression and chemo-resistance in lung squamous cell carcinoma. Ann Surg Oncol 24(13):4017–4024. https://doi.org/10.1245/s10434-017-6083-0 Yan L, Dong X, Gao J et al (2018) A novel rapid quantitative method reveals stathmin-1 as a promising marker for esophageal squamous cell carcinoma. Cancer Med 7(5):1802–1813. https://doi.org/10.1002/cam4.1449 Zhou Q, Ching AKK, Leung WKC et al (2011) Novel therapeutic potential in targeting microtubules by nanoparticle albumin-bound paclitaxel in hepatocellular carcinoma. Int J Oncol 38(3):721–731. https://doi.org/10.3892/ijo.2011.902 Nagata T, Takahashi Y, Ishii Y et al (2003) Transcriptional profiling in hepatoblastomas using high-density oligonucleotide DNA array. Cancer Genet Cytogenet 145(2):152–160. https://doi.org/10.1016/s0165-4608(03)00065-7 Pu XY, Zheng DF, Lv T, Zhou YJ, Yang JY, Jiang L (2022) Overexpression of transcription factor 3 drives hepatocarcinoma development by enhancing cell proliferation via activating Wnt signaling pathway. Hepatobiliary Pancreat Dis Int. https://doi.org/10.1016/j.hbpd.2022.01.003 Zheng H, Yang Y, Han J et al (2016) TMED3 promotes hepatocellular carcinoma progression via IL-11/STAT3 signaling. Sci Rep 6:37070. https://doi.org/10.1038/srep37070 Bartoletti-Stella A, Gasparini L, Giacomini C et al (2015) Messenger RNA processing is altered in autosomal dominant leukodystrophy. Hum Mol Genet 24(10):2746–2756. https://doi.org/10.1093/hmg/ddv034 Bouzid D, Fourati H, Amouri A et al (2012) Association of the RAVER2 gene with increased susceptibility for ulcerative colitis. Hum Immunol 73(7):732–735. https://doi.org/10.1016/j.humimm.2012.04.018 Birukova AA, Adyshev D, Gorshkov B, Bokoch GM, Birukov KG, Verin AD (2006) GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 290(3):L540-548. https://doi.org/10.1152/ajplung.00259.2005 Cullis J, Meiri D, Sandi MJ et al (2014) The RhoGEF GEF-H1 is required for oncogenic RAS signaling via KSR-1. Cancer Cell 25(2):181–195. https://doi.org/10.1016/j.ccr.2014.01.025 Nalbant P, Chang YC, Birkenfeld J, Chang ZF, Bokoch GM (2009) Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Mol Biol Cell 20(18):4070–4082. https://doi.org/10.1091/mbc.E09-01-0041 Cao J, Yang T, Tang D, Zhou F, Qian Y, Zou X (2019) Increased expression of GEF-H1 promotes colon cancer progression by RhoA signaling. Pathol Res Pract 215(5):1012–1019. https://doi.org/10.1016/j.prp.2019.02.008 Wang S, Gao S, Zeng Y et al (2022) N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 162(4):1183–1196. https://doi.org/10.1053/j.gastro.2021.12.269 Joo E, Olson MF (2021) Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. Small GTPases 12(5–6):358–371. https://doi.org/10.1080/21541248.2020.1840889 Cheng IK, Tsang BC, Lai KP et al (2012) GEF-H1 over-expression in hepatocellular carcinoma promotes cell motility via activation of RhoA signalling. J Pathol 228(4):575–585. https://doi.org/10.1002/path.4084 Chen H, Gao F, He M et al (2019) Long-read RNA sequencing identifies alternative splice variants in hepatocellular carcinoma and tumor-specific isoforms. Hepatology 70(3):1011–1025. https://doi.org/10.1002/hep.30500 Nakao Y, Nakagawa S, Yamashita ichi Y et al (2021) High ARHGEF2 (GEF-H1) expression is associated with poor prognosis via cell cycle regulation in patients with pancreatic cancer. Ann Surg Oncol 28(8):4733–4743. https://doi.org/10.1245/s10434-020-09383-9 Nie M, Aijaz S, Leefa Chong San IV, Balda MS, Matter K (2009) The Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription. EMBO Rep 10(10):1125–1131. https://doi.org/10.1038/embor.2009.182 Montalto FI, De Amicis F (2020) Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells 9(12):2648. https://doi.org/10.3390/cells9122648 Zhang Y, Zhang T, Yin Q, Luo H (2021) Development and validation of genomic and epigenomic signatures associated with tumor immune microenvironment in hepatoblastoma. BMC Cancer 21:1156. https://doi.org/10.1186/s12885-021-08893-3 Calvisi DF, Solinas A (2020) Hepatoblastoma: current knowledge and promises from preclinical studies. Transl Gastroenterol Hepatol 5:42. https://doi.org/10.21037/tgh.2019.12.03 Jin J, Jin J, Woodfield SE et al (2019) Targeting LRH-1 in hepatoblastoma cell lines causes decreased proliferation. Oncol Rep 41(1):143–153. https://doi.org/10.3892/or.2018.6793