Construction of a Nekhoroshev like result for the asteroid belt dynamical system

Massimilliano Guzzo1, Alessandro Morbidelli2
1Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova, Padova, Italy#TAB#
2CNRS, Observatoire de la Côte d'Azur, Nice Cedex 4, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, V. I.: 1963a, Proof of A. N. Kolmogorov's Theorem on the conservation of conditionally periodic motions with a small variation in the Hamiltonian, Russian Math. Surv., 18(5), 9?36.

Arnold, V. I.: 1963b, Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surveys, 18, 85?191.

Arnold, V. I.: 1963c, On a theorem of Liouville concerning integrable problems of dynamics, Sib. Mathem. Zh., 4(2).

Benettin, G., Galgani L. and Giorgilli A.: 1985, A proof of Nekhoroshev's Theorem for the stability times in nearly integrable Hamiltonian systems, Cel. Mech., 37(l).

Benettin, G. and Gallavotti G.: 1986, Stability of motions near resonances in quasi-integrable Hamiltonian systems, J. Stat. Phys., 44, 293?338.

Benettin, G. and Fassb F.: 1995, Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part I, Nonlinearity, 9, 137?186.

Benettin, G., Fassò F. and Guzzo M.: 1996, Fast rotations of the rigid body: a study by Hamiltonian perturbation theory, Part II: Gyroscopic Rotations preprint.

Bretagnon, P.: 1974, ?Termes à longues périodes dans le système solaire?, Astron. Astrophys. 30, 141?154.

Fassò, F.: 1995, Hamiltonian perturbation theory on a manifold, Cel. Mech. Dyn. Astron. 62(43).

Gallavotti, G.: 1986, Quasi-Integrable Mechanical Systems, critical phenomena, random systems, gauge theories, K. Osterwalder and R. Stora (eds), (Amsterdam: North Holland).

Giorgilli, A. and Morbidelli A.: 1995, Invariant KAM tori and global stability for Hamiltonian systems, submitted to ZAMP.

Giorgilli, A. and Zehnder E.: 1992, Exponentially stability for time dependent potentials, ZAMP, 43, 827?855.

Kolmogorov, A. N.: 1954, On the preservation of conditionally periodic motions, Dokl. Akad. Nauk SSSR, 98, 527.

Kozai, Y.: 1962, Secular perturbations of asteroids with high inclination and eccentricities, Astron. J., 67, 591?598.

Laskar, J.: 1988, Secular evolution of the solar system over 10 million years, Astron. Astrophys., 198, 341?362.

Laskar, J.: 1990, The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones, Icarus, 88, 266?291.

Laskar, J.: 1995, Large scale chaos and marginal stability in the Solar System, XIth ICMP Colloquium, Paris.

Lochak, P.: 1992, Canonical perturbation theory via simultaneous approximations, Usp. Math. Nauk., 47, 59?140. English transl. in Russ. Math, Surv.

Morbidelli, A. and Henrard, J.: 1991, Secular resonances in the asteroid belt: theoretical perturbation approach and the problem of their location, Celest. Mech., 51, 131?167.

Morbidelli, A. and Giorgilli, A.: 1995, On a connection between KAM and Nekhoroshev Theorems, Physica D, 86, 514?516.

Morbidelli, A. and Guzzo, M.: 1996, The Nekhoroshev Theorem and the asteroid belt dynamical system, Celest. Mech., submitted.

Morbidelli A. and Froeschlé C.: 1996, On the relationship between Lyapunov times and macroscopic instability times Celest. Mech., in press.

Moser, J.: 1958, New aspects in the theory of stability of hamiltonian systems, Comm. on Pure and Appl. Math., 11, 81?114.

Nekhoroshev, N. N.: 1977, Exponential estimates of the stability time of near-integrable Hamiltonian systems, Russ. Math, Surveys, 32, 1?65.

Nekhoroshev, N. N.: 1979, Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2, Trudy Sem. Petrovs., 5, 5?50.

Niederman, L.: 1993, Résonances et stabilité dans le problème planétaire, Ph.D. thesis, Univ. de Paris VI.

Niederman, L.: 1996, Stability over exponentially long times in the planetary problem, Nonlinearity, 9, 1703?1751.

Nobili, A., Milani, A. and Carpino, M.: 1989, Fundamental frequencies and small divisors in the orbits of the outer planets, Astron. Astrophys., 210, 313?336.

Pöschel, J.: 1993, Nekhoroshev's estimates for quasi-convex Hamiltonian systems, Math. Z., 213, 187.

Poincaré, H.: 1892, Les Méthodes Nouvelles de la Mécanique Céleste, Gauthier-Villars, Paris.

Robutel, P.: 1995, Stability of the planetary three-body problem, II: KAM theory and the existence of quasiperiodic motions, Celest. Mech., 62, 219?261.

Williams, J. G.: 1969, Secular perturbations in the solar system, Ph.D. dissertation, University of California, Los Angeles.