Construction of a Few Quantum Mechanical Hamiltonians via Lévy-Leblond Type Linearization: Clifford Momentum, Spinor States and Supersymmetry

Advances in Applied Clifford Algebras - Tập 32 - Trang 1-13 - 2022
Arindam Chakraborty1, Bhaskar Debnath1, Ritaban Datta1, Pratyay Banerjee2
1Department of Physics, Heritage Institute of Technology, Kolkata, India
2Department of Physics, P. R. Thakur Govt. College, Thakurnagar, India

Tóm tắt

A number of new Lévy-Leblond type equations admitting four component spinor solutions have been proposed. The pair of linearized equations thus obtained in each case lead to Hamiltonians with characteristic features like L-S coupling and supersymmetry. The relevant momentum operators have often been understood in terms of Clifford algebraic bases producing Schrödinger Hamiltonians with L-S coupling. As for example, Hamiltonians representing Rashba effect or three dimensional harmonic oscillator have been constructed. Moreover the supersymmetric nature of one dimensional harmonic oscillator emerges naturally in this formulation.

Tài liệu tham khảo

Aizawa, N., Kuznetsova, Z., Tanaka, H., Toppan, F.: \(Z_2\times Z_2\)-graded Lie symmetries of the Lévi-Leblond equations. Prog. Theor. Exp. Phys. 2016, 123A01 (2016) Balantekin, A.B.: Accidental degeneracies and supersymmetric quantum mechanics. Ann. Phys. 164, 277 (1985) Bercioux, D., Lucignano, P.: Quantum transport in Rashba spin-orbit materials: a review. Rep. Prog. Phys. 78, 106001 (2015) Bychkov, Yu.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 17, 6039 (1984) Calogero, F.: Exactly solvable one-dimensional many-body problems. Lett. Nuovo Cimento 13, 411 (1975) Camblong, H.E., Epele, L.N., Fanchiotti, H., Garcia, C.A.: Quantum anomaly in molecular physics. Phys. Rev. Lett. 27, 220402 (2001) Cunha, I.E., Toppan, F.: Three-dimensional superconformal quantum mechanics with \(sl(2\vert 1)\) dynamical symmetry. Phys. Rev. D 100, 125002 (2019) Das, A.: Lectures on Quantum Field Theory. World Scientific, Singapore (2008) de Montigny, M., Niederle, J., Nikitin, A.G.: Galilei invariant theories: I. Constructions of indecomposable finite-dimensional representations of the homogeneous Galilei group: directly and via contractions. J. Phys. A Math. Gen. 39, 9365 (2006) Deriglazov, A.: Classical Mechanics (Hamiltonian and Lagrangian Formalism). Springer, Berlin (2010) Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928) Gibbons, G.W., Townsend, P.K.: Black holes and Calogero models. Phys. Lett. B 454, 187 (1999) Gorsky, A., Nekrasov, N.: Hamiltonian systems of Calogero-type, and two-dimensional Yang–Mills theory. Nucl. Phys. B 414, 213 (1994) Hagen, C.R.: Arbitrary spin Galilean oscillator. Phys. Lett. A 379, 877 (2015) Haldane, F.D.M.: Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981). [Erratum: Phys. Rev. Lett. 48, 569 (1982)] Haldane, F.D.M.: ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys. 14, 2585 (1981) Hladik, J.: Spinors in Physics. Springer Science+Business Media, LLC, Berlin (1999) Hua, Wu., Sprung, D.W.L.: Inverse-square potential and the quantum vortex. Phys. Rev. A 49, 4305 (1994) Huegele, R., Musielak, Z.E., Fry, J.L.: Fundamental dynamical equations for spinor wavefunctions: I. Lévy-Leblond and Schrödinger equations. J. Phys. A Math. Theor. 45, 145205 (2012) Huegele, R., Musielak, Z.E., Fry, J.L.: Generalized Lévi-Leblond and Schrödinger equations for spinor wavefunctions. Adv. Stud. Theor. Phys. 7, 825 (2013) Jaramillo, B., Núñez-Yépez, H.N., Salas Brito, A.L.: Critical electric dipole moment in one dimension. Phys. Lett. A 374, 2707 (2010) Lanczos, C.: The Variational Principles of Mechanics. Unabridged Dover (1986) Republication of the fourth edition published by University of Toronto Press, Toronto (1970) Lévi-Leblond, J.M.: Galilei group and Galilean invariance. In: Loebl, E.M. (ed.) Group Theory and Applications, vol. II. Academic Press, p. 221 (1971) Lévy-Leblond, J.M.: Electron capture by polar molecules. Phys. Rev. 153, 1 (1967) Lévy-Leblond, J.M.: Nonrelativistic particles and wave equations. Commun. Math. Phys. 6, 286 (1967) Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001) Lu, J.-D.: Electron tunneling in a non-magnetic heterostructure in presence of both Dresselhaus and Rashba spin-orbit terms. Phys. E Low Dimens. Syst. Nanostruct. 43, 142 (2010) Martínez-y-Romero, R.P., Núñez-Yépez, H.N., Salas Brito, A.L.: The two dimensional motion of a particle in an inverse square potential: classical and quantum aspects. J. Math. Phys. 54, 053509 (2013) Niederle, J., Nikitin, A.G.: Galilean equations for massless fields. J. Phys. A Math. Theor. 42, 105207 (2009) Sato, M., Fujimoto, S.: Topological phases of noncentrosymmetric superconductors: edge states, Majorana fermions, and non-Abelian statistics. Phys. Rev. B 79, 094504 (2009) Schäpers, T.: Semiconductor Spintronics. Walter de Gruyter, Berlin (2016) Schwabl, F.: Quantum Mechanics. Springer, Berlin (2007) Thaller, B.: The Dirac Equation. Springer, Berlin (1992) Vaz, J., Jr., Rocha, R.D., Jr.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2016) Xiao, Y.-C., Deng, W.-J.: Rashba–Dresselhaus double refraction in a two-dimensional electron gas. Superlattices Microstruct. 48, 181 (2010) Yan, X., Gu, Q.: Superconductivity in a two-dimensional superconductor with Rashba and Dresselhaus spin–orbit couplings. Solid State Commun. 187, 68 (2014)