Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method

Journal of Bioscience and Bioengineering - Tập 115 - Trang 532-539 - 2013
Hideyuki Tamakawa1, Shigehito Ikushima1, Satoshi Yoshida1
1Central Laboratories for Frontier Technology, KIRIN Holdings Co., Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan

Tài liệu tham khảo

Rosenberg, 1980, Fermentation of pentose sugars to ethanol and other neutral products by microorganisms, Enzyme Microb. Technol., 2, 185, 10.1016/0141-0229(80)90045-9 Toivola, 1984, Alcoholic fermentation of d-xylose by yeasts, Appl. Environ. Microbiol., 47, 1221, 10.1128/AEM.47.6.1221-1223.1984 Verduyn, 1985, Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis, Biochem. J., 226, 669, 10.1042/bj2260669 Rizzi, 1989, Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis, Ferment. Bioeng., 67, 20, 10.1016/0922-338X(89)90080-9 Deng, 1990, Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene, Appl. Biochem. Biotechnol., 24–25, 193, 10.1007/BF02920245 Kötter, 1993, Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 38, 776, 10.1007/BF00167144 Toivari, 2001, Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability, Metab. Eng., 3, 236, 10.1006/mben.2000.0191 Johansson, 2001, Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate, Appl. Environ. Microbiol., 67, 4249, 10.1128/AEM.67.9.4249-4255.2001 Grotkjaer, 2005, Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains, Metab. Eng., 7, 437, 10.1016/j.ymben.2005.07.003 Verh, 2003, Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae, Appl. Environ. Microbiol., 69, 5892, 10.1128/AEM.69.10.5892-5897.2003 Nissen, 2001, Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool, Yeast, 18, 19, 10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5 Watanabe, 2007, Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis, Microbiology, 153, 3044, 10.1099/mic.0.2007/007856-0 Petschacher, 2008, Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae, Microb. Cell Fact., 7, 9, 10.1186/1475-2859-7-9 Matsushika, 2009, Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene, Appl. Environ. Microbiol., 75, 3818, 10.1128/AEM.02636-08 Walfridsson, 1995, Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase, Appl. Environ. Microbiol., 61, 4184, 10.1128/AEM.61.12.4184-4190.1995 Jeppsson, 2002, Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose., Appl. Environ. Microbiol., 62, 1604, 10.1128/AEM.68.4.1604-1609.2002 Hamacher, 2002, Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization, Microbiology, 148, 2783, 10.1099/00221287-148-9-2783 Walfridsson, 1997, Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization, Appl. Microbiol. Biotechnol., 48, 218, 10.1007/s002530051041 Eliasson, 2001, The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae, Enzyme Microb. Technol., 29, 288, 10.1016/S0141-0229(01)00386-6 Jin, 2003, Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae, Appl. Biochem. Biotechnol., 105-108, 277, 10.1385/ABAB:106:1-3:277 Karhumaa, 2007, High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 73, 1039, 10.1007/s00253-006-0575-3 Ichii, 1993, Development of a new commercial-scale airlift fermentor for rapid growth of yeast, J. Ferment. Bioeng., 75, 375, 10.1016/0922-338X(93)90137-W Boze, 1992, Production of food and fodder yeasts, Crit. Rev. Biotechnol., 12, 65, 10.3109/07388559209069188 Li, 2004, Glutathione: a review on biotechnological production, Appl. Microbiol. Biotechnol., 66, 233, 10.1007/s00253-004-1751-y Kondo, 1995, A transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA, J. Bacteriol., 177, 7171, 10.1128/jb.177.24.7171-7177.1995 Ikushima, 2009, Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system, Biosci. Biotechnol. Biochem., 73, 879, 10.1271/bbb.80799 Kondo, 1997, High-level expression of a sweet protein, monellin, in the food yeast Candida utilis, Nat. Biotechnol., 15, 453, 10.1038/nbt0597-453 Miura, 1999, High level production of thermostable alpha-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis, J. Mol. Microbiol. Biotechnol., 1, 129 Ikushima, 2009, Genetic engineering of Candida utilis yeast for efficient production of l-lactic acid, Biosci. Biotechnol. Biochem., 73, 1818, 10.1271/bbb.90186 Tamakawa, 2012, Efficient production of l-lactic acid from xylose by a recombinant Candida utilis strain, J. Biosci. Bioeng., 113, 73, 10.1016/j.jbiosc.2011.09.002 Miura, 1998, Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid, Biotechnol. Bioeng., 58, 306, 10.1002/(SICI)1097-0290(19980420)58:2/3<306::AID-BIT29>3.0.CO;2-8 Miura, 1998, Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis, Appl. Environ. Microbiol., 64, 1226, 10.1128/AEM.64.4.1226-1229.1998 Deken, 1966, The Crabtree effect: a regulatory system in yeast, J. Gen. Microbiol., 44, 149, 10.1099/00221287-44-2-149 Bruinenberg, 1984, NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts, Appl. Microbiol. Biotechnol., 19, 256, 10.1007/BF00251847 Tamakawa, 2011, Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase, Biosci. Biotechnol. Biochem., 75, 1994, 10.1271/bbb.110426 Yamada, 2010, Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains, Microb. Cell Fact., 9, 32, 10.1186/1475-2859-9-32 Jeffries, 2004, Metabolic engineering for improved fermentation of pentoses by yeast, Appl. Microbiol. Biotechnol., 63, 495, 10.1007/s00253-003-1450-0 Ha, 2011, Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation, Proc. Natl. Acad. Sci. USA, 108, 504, 10.1073/pnas.1010456108 Rizzi, 1988, Xylose fermentation by yeasts. purifcation and kinetic studies of xylose reductase from Pichia stipitis, Appl. Microbiol. Biotechnol., 29, 148, 10.1007/BF00939299 Bakker, 2001, Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae, FEMS Microbiol. Rev., 25, 15, 10.1111/j.1574-6976.2001.tb00570.x Jin, 2003, Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity, Appl. Environ. Microbiol., 69, 495, 10.1128/AEM.69.1.495-503.2003 Sonderegger, 2004, Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis, Appl. Environ. Microbiol., 70, 2307, 10.1128/AEM.70.4.2307-2317.2004 Kilian, 1993, The kinetics and regulation of d-xylose transport in Candida utilis, World J. Microbiol. Biotechnol., 9, 357, 10.1007/BF00383080 Ohnishi, 1966, Preparation and some properties of yeast mitochondria, J. Biol. Chem., 25, 1797, 10.1016/S0021-9258(18)96706-2 van Dijken, 1993, Kinetics of growth and sugar consumption in yeasts, Antonie Van Leeuwenhoek, 63, 343, 10.1007/BF00871229